Artículo

Marcolongo, J.P.; Zeida, A.; Semelak, J.A.; Foglia, N.O.; Morzan, U.N.; Estrin, D.A.; Lebrero, M.C.G.; Scherlis, D.A. "Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code" (2018) Frontiers in Chemistry. 6(MAR)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments. © 2018 Marcolongo, Zeida, Semelak, Foglia, Morzan, Estrin, González Lebrero and Scherlis.

Registro:

Documento: Artículo
Título:Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code
Autor:Marcolongo, J.P.; Zeida, A.; Semelak, J.A.; Foglia, N.O.; Morzan, U.N.; Estrin, D.A.; Lebrero, M.C.G.; Scherlis, D.A.
Filiación:DQIAyQF, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
Palabras clave:DFT; Free energy; GPU; QM/MM; TDDFT
Año:2018
Volumen:6
Número:MAR
DOI: http://dx.doi.org/10.3389/fchem.2018.00070
Título revista:Frontiers in Chemistry
Título revista abreviado:Front. Chem.
ISSN:22962646
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22962646_v6_nMAR_p_Marcolongo

Referencias:

  • Bailey, T.S., Henthorn, H.A., Pluth, M.D., The intersection of NO and H2S: persulfides generate NO from nitrite through polysulfide formation (2016) Inorg. Chem, 55, pp. 12618-12625
  • Barone, V., Malgorzata, B., Giuseppe, B., Extending the range of computational spectroscopy by QM/MM approaches: time-dependent and time-independent routes (2010) Adv. Quantum Chem, 59, pp. 17-57
  • Becke, A.D., A multicenter numerical integration scheme for polyatomic molecules (1988) J. Chem. Phys, 88, pp. 2547-2553
  • Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., Estrin, D.A., Solvation and structure of LiAIH4 in ethereal solvents (2005) Inorg. Chem, 44, pp. 5286-5292
  • Bloino, J., Baiardi, A., Biczysko, M., Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: an overview (2016) Int. J. Quantum Chem, 116, pp. 1543-1574
  • Bolden, C., King, S.B., Kim-Shapiro, D.B., Reactions between nitrosopersulfide and heme proteins (2016) Free Radic. Biol. Med, 99, pp. 418-425
  • Bringas, M., Semelak, J., Zeida, A., Estrin, D.A., Theoretical investigation of the mechanism of nitroxyl decomposition in aqueous solution (2016) J. Inorg. Biochem, 162, pp. 102-108
  • Carvalho, A.T., Barrozo, A., Doron, D., Kilshtain, A.V., Major, D.T., Kamerlin, S.C.L., Challenges in computational studies of enzyme structure, function and dynamics (2014) J. Mol. Graph. Model, 54, pp. 62-79
  • Chipot, C., Pearlman, D.A., Free energy calculations (2002) The long and winding gilded road. Mol. Simul, 28, pp. 1-12
  • Chipot, C., Pohorille, A., (2007) Free Energy Calculations: Theory and Applications in Chemistry and Biology, , Berlin; Heidelberg: Springer-Verlag
  • Cortese-Krott, M.M., Kuhnle, G.G.C., Dyson, A., Fernandez, B.O., Grman, M., DuMond, J.F., Key bioactive reaction products of the NO/H(2)S interaction are S/N-hybrid species, polysulfides, and nitroxyl (2015) Proc. Natl. Acad. Sci. U.S.A, 112, pp. E4651-E4660
  • Elola, M.D., Estrin, D.A., Laria, D., Hybrid quantum classical molecular dynamics simulation of the proton-transfer reaction of HO-with HBr in aqueous clusters (1999) J. Phys. Chem. A, 103, pp. 5105-5112
  • Estrin, D.A., Corongiu, G., Clementi, E., (1993) Methods and Techniques in Computational Chemistry, , Cagliari: Stef
  • Fehling, C., Friedrichs, G., Dimerization of HNO in aqueous solution: an interplay of solvation effects, fast acid-base equilibria, and intramolecular hydrogen bonding? (2011) J. Am. Chem. Soc, 133, pp. 17912-17922
  • Filipovic, M.R., Miljkovic, J.L., Nauser, T., Royzen, M., Klos, K., Shubina, T., Chemical characterization of the smallest S-Nitrosothiol, HSNO; cellular cross-talk of H2S and S-Nitrosothiols (2012) J. Am. Chem. Soc, 134, pp. 12016-12027
  • Foglia, N.O., Morzan, U.N., Estrin, D.A., Scherlis, D.A., Gonzalez Lebrero, M.C., Role of core electrons in quantum dynamics using TDDFT (2017) J. Chem. Theor. Comput, 13, pp. 77-85
  • Futrelle, R.P., McGinty, D.J., Calculation of spectra and correlation functions from molecular dynamics data using the fast Fourier transform (1971) Chem. Phys. Lett, 12, pp. 285-287
  • Godbout, N., Salahub, D.R., Andzelm, J., Wimmer, E., Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I Boron through neon, optimization technique and validation (1992) Can. J. Chem, 70, pp. 560-571
  • Gonzalez Lebrero, M.C., Perissinotti, L.L., Estrin, D.A., Solvent effects on peroxynitrite structure and properties from QM/MM simulations (2005) J. Phys. Chem. A, 109, pp. 9598-9604
  • Hofmann, B., Hecht, H.J., Flohé, L., Peroxiredoxins (2002) Biol. Chem, 383, pp. 347-364
  • Hopkins, R.Z., Hydrogen peroxide in biology and medicine: an overview (2017) Reactive Oxygen Species, 3, pp. 26-37
  • Hu, H., Yang, W., Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods (2008) Annu. Rev. Phys. Chem, 59, pp. 573-601
  • Hugo, M., Turell, L., Manta, B., Botti, H., Monteiro, G., Netto, L.E., Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics (2009) Biochemistry, 48, pp. 9416-9426
  • Kollman, P., Free energy calculations: applications to chemical and biochemical phenomena (1993) Chem. Rev, 93, pp. 2395-2417
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., Improved side-chain torsion potentials for the Amber ff99SB protein force field (2010) Proteins, 78, pp. 1950-1958
  • Lopata, K., Govind, N., Modeling fast electron dynamics with real-time time-dependent density functional theory: application to small molecules and chromophores (2011) J. Chem. Theor. Comput, 7, pp. 1344-1355
  • Luo, D., Smith, S.W., Anderson, B.D., Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution (2005) J. Pharm. Sci, 94, pp. 304-316
  • Ma, X.L., Gao, F., Liu, G.-L., Lopez, B.L., Christopher, T.A., Fukuto, J.M., Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury (1999) Proc. Natl. Acad. Sci. U.S.A, 96, pp. 14617-14622
  • Marcolongo, J.P., Morzan, U.N., Zeida, A., Scherlis, D.A., Olabe, J.A., Nitrosodisulfide [S2NO]-(perthionitrite) is a true intermediate during the 'cross-talk' of nitrosyl and sulfide (2016) Phys. Chem. Chem. Phys, 18, pp. 30047-30052
  • Marcolongo, J.P., Zeida, A., Slep, L.D., Olabe, J.A., Thionitrous acid/thionitrite and perthionitrite intermediates in the 'Crosstalk' of NO and H2S, in Adv (2017) Inorg. Chem, 70, pp. 277-309
  • Marques, M.A.L., Oliveira, M.J.T., Burnus, T., Libxc: a library of exchange and correlation functionals for density functional theory (2012) Comput. Phys. Commun, 183, pp. 2272-2281
  • Marques, M.A.L., Ullrich, C.A., Nogueira, F., Rubio, A., Burke, K., Gross, E.K.U., (2006) Time-Dependent Density Functional Theory, , Berlin; Heidelberg: Springer
  • McQuarrie, D.A., (1976) Statistical Mechanics, , London, UK: HarperCollins Publishing, Inc
  • Miranda, K.M., The chemistry of nitroxyl (HNO) and implications in biology (2005) Coord. Chem. Rev, 249, pp. 433-455
  • Miranda, K.M., Katori, T., Torres De Holding, C.L., Thomas, L., Ridnour, L.A., McLendon, W.J., Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo (2005) J. Med. Chem, 48, pp. 8220-8228
  • Morzan, U.N., Ramírez, F.F., González Lebrero, M.C., Scherlis, D.A., Electron transport in real time from first-principles (2017) J. Chem. Phys, 146
  • Morzan, U.N., Ramírez, F.F., Oviedo, M.B., Sánchez, C.G., Scherlis, D.A., Lebrero, M.C.G., Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework (2014) J. Chem. Phys, 140
  • Munro, A.P., Williams, D.L.H., Reactivity of sulfur nucleophiles towards S-nitrosothiols (2000) J. Chem. Soc. Perkin Trans, 2, pp. 1794-1797
  • Nitsche, M.A., Ferreria, M., Mocskos, E.E., González Lebrero, M.C., GPU accelerated implementation of density functional theory for hybrid QM/MM simulations (2014) J. Chem. Theor. Comput, 10, pp. 959-967
  • Obara, S., Saika, A., Efficient recursive computation of molecular integrals over cartesian gaussian functions (1986) J. Chem. Phys, 84, pp. 3963-3974
  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun, 91, pp. 1-41
  • Perkins, A., Nelson, K.J., Parsonage, D., Poole, L.B., Karplus, P.A., Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling (2015) Trends Biochem. Sci, 40, pp. 435-445
  • Runge, E., Gross, E.K., Density-functional theory for time-dependent systems (1984) Phys. Rev. Lett, 52, p. 997
  • Seel, F., Kuhn, R., Simon, G., Wagner, M., PNP-Perthionitrit und PNP-Monothionitrit / PNP-Perthionitrite and PNP-Monothionitrite (1985) Z. Naturforschung B, 40, pp. 1607-1617
  • Seel, F., Wagner, M., Reaction of sulfides with nitrogen monoxide in aqueous solution (1988) ChemInform, 19, pp. 189-192
  • Shafirovich, V., Lymar, S.V., Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide (2002) Proc. Natl. Acad. Sci. U.S.A, 99, pp. 7340-7345
  • Soito, L., Williamson, C., Knutson, S.T., Fetrow, J.S., Poole, L.B., Nelson, K.J., PREX: peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family (2011) Nucleic Acids Res, 39, pp. D332-D337
  • Stratmann, R.E., Scuseria, G.E., Frisch, M.J., Achieving linear scaling in exchange-correlation density functional quadratures (1996) Chem. Phys. Lett, 257, pp. 213-223
  • Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem. Rev, 105, pp. 2999-3093
  • Tsuda, T., Toyoshima, C., Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase (2009) EMBO J, 28, pp. 1782-1791
  • Valsson, O., Campomanes, P., Tavernelli, I., Rothlisberger, U., Filippi, C., Rhodopsin absorption from first principles: bypassing common pitfalls (2013) J. Chem. Theor. Comput, 9, pp. 2441-2454
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., GROMACS: fast, flexible, and free (2005) J. Comput. Chem, 26, pp. 1701-1718
  • Wedmann, R., Zahl, A., Shubina, T.E., Dürr, M., Heinemann, F.W., Bugenhagen, B.E., Does perthionitrite (SSNO-) account for sustained bioactivity of NO? (2015) A (bio)chemical characterization. Inorg. Chem, 54, pp. 9367-9380
  • Winterbourn, C.C., Reconciling the chemistry and biology of reactive oxygen species (2008) Nat. Chem. Biol, 4, pp. 278-286
  • Winterbourn, C.C., Metodiewa, D., Reactivity of biologically relevant thiol compounds with superoxide and hydrogen peroxide (1999) Free Radic. Biol. Med, 27, pp. 322-328
  • Zeida, A., Babbush, R., González Lebrero, M.C., Trujillo, M., Radi, R., Estrin, D.A., Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm (2012) Chem. Res. Toxicol, 25, pp. 741-746
  • Zeida, A., González Lebrero, M.C., Radi, R., Trujillo, M., Estrin, D.A., Mechanism of cysteine oxidation by peroxynitrite: an integrated experimental and theoretical study (2013) Arch. Biochem. Biophys, 539, pp. 81-86
  • Zeida, A., Reyes, A.M., González Lebrero, M.C., Radi, R., Trujillo, M., Estrin, D.A., The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step (2014) Chem. Commun, 50, pp. 10070-10073
  • Zeida, A., Reyes, A.M., Lichtig, P., Hugo, M., Vazquez, D.S., Santos, J., Molecular basis of hydroperoxide specificity in peroxiredoxins: the case of AhpE from Mycobacterium tuberculosis (2015) Biochemistry, 54, pp. 7237-7247
  • Zhao, Y., Truhlar, D.G., Density functionals with broad applicability in chemistry (2008) Acc. Chem. Res, 41, pp. 157-167
  • Zuehlsdorff, T.J., Haynes, P.D., Hanke, F., Payne, M.C., Hine, N.D.M., Solvent effects on electronic excitations of an organic chromophore (2016) J. Chem. Theor. Comput, 12, pp. 1853-1861

Citas:

---------- APA ----------
Marcolongo, J.P., Zeida, A., Semelak, J.A., Foglia, N.O., Morzan, U.N., Estrin, D.A., Lebrero, M.C.G.,..., Scherlis, D.A. (2018) . Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code. Frontiers in Chemistry, 6(MAR).
http://dx.doi.org/10.3389/fchem.2018.00070
---------- CHICAGO ----------
Marcolongo, J.P., Zeida, A., Semelak, J.A., Foglia, N.O., Morzan, U.N., Estrin, D.A., et al. "Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code" . Frontiers in Chemistry 6, no. MAR (2018).
http://dx.doi.org/10.3389/fchem.2018.00070
---------- MLA ----------
Marcolongo, J.P., Zeida, A., Semelak, J.A., Foglia, N.O., Morzan, U.N., Estrin, D.A., et al. "Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code" . Frontiers in Chemistry, vol. 6, no. MAR, 2018.
http://dx.doi.org/10.3389/fchem.2018.00070
---------- VANCOUVER ----------
Marcolongo, J.P., Zeida, A., Semelak, J.A., Foglia, N.O., Morzan, U.N., Estrin, D.A., et al. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code. Front. Chem. 2018;6(MAR).
http://dx.doi.org/10.3389/fchem.2018.00070