Artículo

Zgajnar, N.R.; De Leo, S.A.; Lotufo, C.M.; Erlejman, A.G.; Pilipuk, G.P.; Galigniana, M.D. "Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52" (2019) Biomolecules. 9(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors. Afterwards, they emerged as likely contributors to a variety of other hormone-dependent diseases, stress-related pathologies, psychiatric disorders, cancer, and other syndromes characterized by misfolded proteins. The differential biological actions of these immunophilins have been assigned to the structurally similar, but functionally divergent enzymatic domain. Nonetheless, they also require the complementary input of the TPR domain, most likely due to their dependence with the association to Hsp90 as a functional unit. FKBP51 and FKBP52 regulate a variety of biological processes such as steroid receptor action, transcriptional activity, protein conformation, protein trafficking, cell differentiation, apoptosis, cancer progression, telomerase activity, cytoskeleton architecture, etc. In this article we discuss the biology of these events and some mechanistic aspects. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Registro:

Documento: Artículo
Título:Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52
Autor:Zgajnar, N.R.; De Leo, S.A.; Lotufo, C.M.; Erlejman, A.G.; Pilipuk, G.P.; Galigniana, M.D.
Filiación:Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, 1428, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Buenos Aires, 1428, Argentina
Palabras clave:Cell differentiation; Dynein; FKBP51; FKBP52; Hsp90; Neurodifferentiation; NF-κB; Telomerase
Año:2019
Volumen:9
Número:2
DOI: http://dx.doi.org/10.3390/biom9020052
Título revista:Biomolecules
Título revista abreviado:Biomolecules
ISSN:2218273X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2218273X_v9_n2_p_Zgajnar

Referencias:

  • Schiene-Fischer, C., Multidomain Peptidyl Prolyl cis/trans Isomerases (2015) Biochim. Biophys. Acta, 1850, pp. 2005-2016
  • Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., FKBP family proteins: Immunophilins with versatile biological functions (2008) Neurosignals, 16, pp. 318-325
  • Kino, T., Hatanaka, H., Miyata, S., Inamura, N., Nishiyama, M., Yajima, T., Goto, T., Aoki, H., FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro (1987) J. Antibiot., 40, pp. 1256-1265
  • Kino, T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, M., Kohsaka, M., Imanaka, H., FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics (1987) J. Antibiot., 40, pp. 1249-1255
  • Ruegger, A., Kuhn, M., Lichti, H., Loosli, H.R., Huguenin, R., Quiquerez, C., von Wartburg, A., Cyclosporin, A., A Peptide Metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity (1976) Helv. Chim. Acta, 59, pp. 1075-1092
  • Ciclosporin Drug Discovery—A History; John Wiley & Sons, p. 2005. , New York, NY, USA
  • Hanes, S.D., Prolyl isomerases in gene transcription (2015) Biochim. Biophys. Acta, 1850, pp. 2017-2034
  • Matena, A., Rehic, E., Honig, D., Kamba, B., Bayer, P., Structure and function of the human parvulins Pin1 and Par14/17 (2018) Biol. Chem., 399, pp. 101-125
  • Barik, S., Dual-Family Peptidylprolyl Isomerases (Immunophilins) of Select Monocellular Organisms (2018) Biomolecules, 8
  • Netzer, W.J., Hartl, F.U., Recombination of protein domains facilitated by co-translational folding in eukaryotes (1997) Nature, 388, pp. 343-349
  • Helbig, S., Patzer, S.I., Schiene-Fischer, C., Zeth, K., Braun, V., Activation of colicin M by the FkpA prolyl cis-trans isomerase/chaperone (2011) J. Biol. Chem., 286, pp. 6280-6290
  • Theuerkorn, M., Fischer, G., Schiene-Fischer, C., Prolyl cis/trans isomerase signalling pathways in cancer (2011) Curr. Opin. Pharmacol., 11, pp. 281-287
  • Li, Z.W., Zhang, J., Ouyang, C.H., Li, C.Y., Zhao, F.B., Liu, Y.W., Ai, Y.X., Hu, W.P., Potentiation by WIN 55,212-2 of GABA-activated currents in rat trigeminal ganglion neurones (2009) Br. J. Pharmacol., 158, pp. 1904-1910
  • Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol, 21, pp. 91-103
  • Callebaut, I., Renoir, J.M., Lebeau, M.C., Massol, N., Burny, A., Baulieu, E.E., Mornon, J.P., An immunophilin that binds M(R) 90,000 heat shock protein: Main structural features of a mammalian p59 protein (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 6270-6274
  • Smith, D.F., Tetratricopeptide repeat cochaperones in steroid receptor complexes (2004) Cell Stress Chaperones, 9, pp. 109-121
  • Miyata, Y., Chambraud, B., Radanyi, C., Leclerc, J., Lebeau, M.C., Renoir, J.M., Shirai, R., Baulieu, E.E., Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: Regulation of HSP90-binding activity of FKBP52 (1997) Proc. Natl. Acad. Sci. USA, 94
  • Wochnik, G.M., Ruegg, J., Abel, G.A., Schmidt, U., Holsboer, F., Rein, T., FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells (2005) J. Biol. Chem., 280, pp. 4609-4616
  • Riggs, D.L., Cox, M.B., Cheung-Flynn, J., Prapapanich, V., Carrigan, P.E., Smith, D.F., Functional specificity of co-chaperone interactions with Hsp90 client proteins (2004) Crit. Rev. Biochem. Mol. Biol., 39, pp. 279-295
  • Fries, G.R., Gassen, N.C., Rein, T., The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease (2017) Int. J. Mol. Sci., 18, p. 2614
  • Cauerrhff, A.A., Galigniana, M.D., Structural characteristics of the TPR protein-Hsp90 interaction: A new target in biotechnology. In Role of Molecular Chaperones in Structural Folding, Biological Actions, and Drug Interactions of Client Proteins; Galigniana, M.D., Ed.; Bentham Science Publishers: Emirate of Sharjah (2018) United Arab Emirates, 1, pp. 73-173. , Volume, pp
  • Lemaster, D.M., Mustafi, S.M., Brecher, M., Zhang, J., Heroux, A., Li, H., Hernandez, G., Coupling of Conformational Transitions in the N-terminal Domain of the 51-kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins (2015) J. Biol. Chem., 290, pp. 15746-15757
  • Schopf, F.H., Biebl, M.M., Buchner, J., The HSP90 chaperone machinery (2017) Nat. Rev. Mol. Cell Biol., 18, pp. 345-360
  • Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab., 22, pp. 481-490
  • Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J., Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 868-873
  • Wu, B., Li, P., Liu, Y., Lou, Z., Ding, Y., Shu, C., Ye, S., Rao, Z., 3D structure of human FK506-binding protein 52: Implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8348-8353
  • Guy, N.C., Garcia, Y.A., Sivils, J.C., Galigniana, M.D., Cox, M.B., Functions of the Hsp90-binding FKBP immunophilins (2015) Subcell. Biochem., 78, pp. 35-68
  • Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr. Opin. Pharmacol., 11, pp. 314-319
  • de Leon, J.T., Iwai, A., Feau, C., Garcia, Y., Balsiger, H.A., Storer, C.L., Suro, R.M., Kim, Y.S., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 11878-11883
  • Mazaira, G.I., Daneri-Becerra, C., Zgajnar, N.R., Lotufo, C.M., Galigniana, M.D., Gene expression regulation by heat-shock proteins: The cardinal roles of HSF1 and Hsp90 (2018) Biochem. Soc. Trans., 46, pp. 51-65
  • J. Mol. Biol. 2001; Pratt, W.B., The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase (1997) Annu. Rev. Pharm. Toxicol., 37, pp. 297-326
  • Mazaira, G.I., Zgajnar, N.R., Lotufo, C.M., Daneri-Becerra, C., Sivils, J.C., Soto, O.B., Cox, M.B., Galigniana, M.D., The Nuclear Receptor Field: A Historical Overview and Future Challenges (2018) Nucl. Recept. Res., 5
  • Pratt, W.B., Toft, D.O., Steroid receptor interactions with heat shock protein and immunophilin chaperones (1997) Endocr. Rev., 18, pp. 306-360
  • Auricchio, F., Phosphorylation of steroid receptors (1989) J. Steroid Biochem., 32, pp. 613-622
  • Galigniana, M.D., Native rat kidney mineralocorticoid receptor is a phosphoprotein whose transformation to a DNA-binding form is induced by phosphatases (1998) Biochem. J., 333, pp. 555-563
  • McGuinness, D., McEwan, I.J., Posttranslational Modifications of Steroid Receptors: Phosphorylation (2016) Methods Mol. Biol., 1443, pp. 105-117
  • Harrell, J.M., Kurek, I., Breiman, A., Radanyi, C., Renoir, J.M., Pratt, W.B., Galigniana, M.D., All of the protein interactions that link steroid receptor.Hsp90.immunophilin heterocomplexes to cytoplasmic dynein are common to plant and animal cells (2002) Biochemistry, 41, pp. 5581-5587
  • Pratt, W.B., Krishna, P., Olsen, L.J., Hsp90-binding immunophilins in plants: The protein movers (2001) Trends Plant Sci, 6, pp. 54-58
  • Erlejman, A.G., Lagadari, M., Toneatto, J., Piwien-Pilipuk, G., Galigniana, M.D., Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression (2014) Biochim. Biophys. Acta, 1839, pp. 71-87
  • Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J. Biol. Chem., 276, pp. 14884-14889
  • Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell. Biol., 30, pp. 1285-1298
  • Darshan, M.S., Loftus, M.S., Thadani-Mulero, M., Levy, B.P., Escuin, D., Zhou, X.K., Gjyrezi, A., Tagawa, S.T., Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer (2011) Cancer Res, 71, pp. 6019-6029
  • Pratt, W.B., Galigniana, M.D., Harrell, J.M., Defranco, D.B., Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement (2004) Cell Signal, 16, pp. 857-872
  • Yang, J., Liu, J., Defranco, D.B., Subnuclear trafficking of glucocorticoid receptors in vitro: Chromatin recycling and nuclear export (1997) J. Cell Biol., 137, pp. 523-538
  • Fu, X., Liang, C., Li, F., Wang, L., Wu, X., Lu, A., Xiao, G., Zhang, G., The Rules and Functions of Nucleocytoplasmic Shuttling Proteins (2018) Int. J. Mol. Sci., 19, p. 1445
  • Mazaira, G.I., Lagadari, M., Erlejman, A.G., Galigniana, M.D., The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors (2014) Nucl. Recept. Res., 1, pp. 1-17
  • Echeverria, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., Galigniana, M.D., Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta (2009) Mol. Cell. Biol., 29, pp. 4788-4797
  • Presman, D.M., Alvarez, L.D., Levi, V., Eduardo, S., Digman, M.A., Marti, M.A., Veleiro, A.S., Pecci, A., Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids (2010) Plos ONE, 5
  • Grossmann, C., Ruhs, S., Langenbruch, L., Mildenberger, S., Stratz, N., Schumann, K., Gekle, M., Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling (2012) Chem. Biol., 19, pp. 742-751
  • Silverstein, A.M., Galigniana, M.D., Chen, M.S., Owens-Grillo, J.K., Chinkers, M., Pratt, W.B., Protein phosphatase 5 is a major component of glucocorticoid receptor.Hsp90 complexes with properties of an FK506-binding immunophilin (1997) J. Biol. Chem., 272, pp. 16224-16230
  • Davies, T.H., Ning, Y.M., Sanchez, E.R., A new first step in activation of steroid receptors: Hormone-induced switching of FKBP51 and FKBP52 immunophilins (2002) J. Biol. Chem., 277, pp. 4597-4600
  • Madan, A.P., Defranco, D.B., Bidirectional transport of glucocorticoid receptors across the nuclear envelope (1993) Proc. Natl. Acad. Sci. USA, 90, pp. 3588-3592
  • Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Piwien-Pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1, pp. 299-308
  • Galigniana, M.D., Steroid receptor coupling becomes nuclear (2012) Chem. Biol., 19, pp. 662-663
  • Gallo, L.I., Ghini, A.A., Piwien Pilipuk, G., Galigniana, M.D., Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity (2007) Biochemistry, 46
  • Erlejman, A.G., Lagadari, M., Harris, D.C., Cox, M.B., Galigniana, M.D., Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52 (2014) Curr. Protein Pept. Sci., 15, pp. 205-215
  • Ratajczak, T., Cluning, C., Ward, B.K., Steroid Receptor-Associated Immunophilins: A Gateway to Steroid Signalling (2015) Clin. Biochem. Rev., 36, pp. 31-52
  • Oroz, J., Chang, B.J., Wysoczanski, P., Lee, C.T., Perez-Lara, A., Chakraborty, P., Hofele, R.V., Biernat, J., Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex (2018) Nat. Commun., 9
  • Cluning, C., Ward, B.K., Rea, S.L., Arulpragasam, A., Fuller, P.J., Ratajczak, T., The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones (2013) Mol. Endocrinol., 27, pp. 1020-1035
  • Sabbagh, J.J., Cordova, R.A., Zheng, D., Criado-Marrero, M., Lemus, A., Li, P., Baker, J.D., Martinez-Licha, C., Targeting the FKBP51/GR/Hsp90 Complex to Identify Functionally Relevant Treatments for Depression and PTSD (2018) ACS Chem. Biol., 13, pp. 2288-2299
  • Echeverria, P.C., Picard, D., Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility (2010) Biochim. Biophys. Acta, 1803, pp. 641-649
  • Ebong, I.O., Beilsten-Edmands, V., Patel, N.A., Morgner, N., Robinson, C.V., The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes (2016) Cell Discov, 2
  • Vandevyver, S., Dejager, L., Libert, C., On the trail of the glucocorticoid receptor: Into the nucleus and back (2012) Traffic, 13, pp. 364-374
  • Tatro, E.T., Everall, I.P., Kaul, M., Achim, C.L., Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: Implications for major depressive disorder (2009) Brain Res, 1286, pp. 1-12
  • Jeong, Y.Y., Her, J., Oh, S.Y., Chung, I.K., Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT (2016) Biochem. J., 473, pp. 3517-3532
  • Vafopoulou, X., Steel, C.G., Cytoplasmic travels of the ecdysteroid receptor in target cells: Pathways for both genomic and non-genomic actions (2012) Front. Endocrinol., 3
  • Schuster, M., Schnell, L., Feigl, P., Birkhofer, C., Mohr, K., Roeder, M., Carle, S., Buchner, J., The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells (2017) Sci. Rep., 7
  • Erlejman, A.G., de Leo, S.A., Mazaira, G.I., Molinari, A.M., Camisay, M.F., Fontana, V., Cox, M.B., Galigniana, M.D., NF-κB transcriptional activity is modulated by FK506-binding proteins FKBP51 and FKBP52: A role for peptidyl-prolyl isomerase activity (2014) J. Biol. Chem., 289, pp. 26263-26276
  • Galigniana, M.D., Harrell, J.M., O'hagen, H.M., Ljungman, M., Pratt, W.B., Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus (2004) J. Biol. Chem., 279, pp. 22483-22489
  • Colo, G.P., Rubio, M.F., Nojek, I.M., Werbajh, S.E., Echeverria, P.C., Alvarado, C.V., Nahmod, V.E., Costas, M.A., The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action (2008) Oncogene, 27, pp. 2430-2444
  • Lagadari, M., Zgajnar, N.R., Gallo, L.I., Galigniana, M.D., Hsp90-binding immunophilin FKBP51 forms complexes with hTERT enhancing telomerase activity (2016) Mol. Oncol., 10, pp. 1086-1098
  • McKeen, H.D., McAlpine, K., Valentine, A., Quinn, D.J., McClelland, K., Byrne, C., O'rourke, M., McCarthy, H.O., A novel FK506-like binding protein interacts with the glucocorticoid receptor and regulates steroid receptor signaling (2008) Endocrinology, 149, pp. 5724-5734
  • Nair, S.C., Rimerman, R.A., Toran, E.J., Chen, S., Prapapanich, V., Butts, R.N., Smith, D.F., Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor (1997) Mol. Cell. Biol., 17, pp. 594-603
  • Barent, R.L., Nair, S.C., Carr, D.C., Ruan, Y., Rimerman, R.A., Fulton, J., Zhang, Y., Smith, D.F., Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes (1998) Mol. Endocrinol., 12, pp. 342-354
  • Ratajczak, T., Hlaing, J., Brockway, M.J., Hahnel, R., Isolation of untransformed bovine estrogen receptor without molybdate stabilization (1990) J. Steroid Biochem., 35, pp. 543-553
  • Thadani-Mulero, M., Portella, L., Sun, S., Sung, M., Matov, A., Vessella, R.L., Corey, E., Giannakakou, P., Androgen receptor splice variants determine taxane sensitivity in prostate cancer (2014) Cancer Res, 74, pp. 2270-2282
  • Pratt, W.B., Czar, M.J., Stancato, L.F., Owens, J.K., The hsp56 immunophilin component of steroid receptor heterocomplexes: Could this be the elusive nuclear localization signal-binding protein? (1993) J. Steroid Biochem. Mol. Biol., 46, pp. 269-279
  • Jhaveri, K., Ochiana, S.O., Dunphy, M.P., Gerecitano, J.F., Corben, A.D., Peter, R.I., Janjigian, Y.Y., Modi, S., Heat shock protein 90 inhibitors in the treatment of cancer: Current status and future directions (2014) Expert Opin. Investig. Drugs, 23, pp. 611-628
  • Chatterjee, S., Burns, T.F., Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach (2017) Int. J. Mol. Sci., 18, p. 1978
  • Inda, C., Bolaender, A., Wang, T., Gandu, S.R., Koren, J., Stressing Out Hsp90 in Neurotoxic Proteinopathies (2016) Curr. Top. Med. Chem., 16, pp. 2829-2838
  • Reynolds, P.D., Ruan, Y., Smith, D.F., Scammell, J.G., Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51 (1999) J. Clin. Endocrinol. Metab., 84, pp. 663-669
  • Denny, W.B., Valentine, D.L., Reynolds, P.D., Smith, D.F., Scammell, J.G., Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding (2000) Endocrinology, 141, pp. 4107-4113
  • Westberry, J.M., Sadosky, P.W., Hubler, T.R., Gross, K.L., Scammell, J.G., Glucocorticoid resistance in squirrel monkeys results from a combination of a transcriptionally incompetent glucocorticoid receptor and overexpression of the glucocorticoid receptor co-chaperone FKBP51 (2006) J. Steroid Biochem. Mol. Biol., 100, pp. 34-41
  • Binder, E.B., Salyakina, D., Lichtner, P., Wochnik, G.M., Ising, M., Putz, B., Papiol, S., Kohli, M.A., Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment (2004) Nat. Genet., 36, pp. 1319-1325
  • Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Smith, D.F., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo (2003) EMBO J, 22, pp. 1158-1167
  • Ward, B.K., Mark, P.J., Ingram, D.M., Minchin, R.F., Ratajczak, T., Expression of the estrogen receptor-associated immunophilins, cyclophilin 40 and FKBP52, in breast cancer (1999) Breast Cancer Res. Treat., 58, pp. 267-280
  • Ratajczak, T., Steroid Receptor-Associated Immunophilins: Candidates for Diverse Drug-Targeting Approaches in Disease (2015) Curr. Mol. Pharmacol., 9, pp. 66-95
  • Gougelet, A., Bouclier, C., Marsaud, V., Maillard, S., Mueller, S.O., Korach, K.S., Renoir, J.M., Estrogen receptor α and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90-and immunophilin-ligands in human breast cancer cells (2005) J. Steroid Biochem. Mol. Biol., 94, pp. 71-81
  • Periyasamy, S., Warrier, M., Tillekeratne, M.P., Shou, W., Sanchez, E.R., The immunophilin ligands cyclosporin A and FK506 suppress prostate cancer cell growth by androgen receptor-dependent and-independent mechanisms (2007) Endocrinology, 148, pp. 4716-4726
  • Lin, J.F., Xu, J., Tian, H.Y., Gao, X., Chen, Q.X., Gu, Q., Xu, G.J., Zhao, F.K., Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis (2007) Int. J. Cancer, 121, pp. 2596-2605
  • Mostaghel, E.A., Page, S.T., Lin, D.W., Fazli, L., Coleman, I.M., True, L.D., Knudsen, B., Matsumoto, A.M., Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: Therapeutic implications for castration-resistant prostate cancer (2007) Cancer Res, 67, pp. 5033-5041
  • Periyasamy, S., Hinds, T., Jr., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29, pp. 1691-1701
  • Ni, L., Yang, C.S., Gioeli, D., Frierson, H., Toft, D.O., Paschal, B.M., FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells (2010) Mol. Cell. Biol., 30, pp. 1243-1253
  • Wu, D., Tao, X., Chen, Z.P., Han, J.T., Jia, W.J., Zhu, N., Li, X., He, Y.X., The environmental endocrine disruptor p-nitrophenol interacts with FKBP51, a positive regulator of androgen receptor and inhibits androgen receptor signaling in human cells (2016) J. Hazard. Mater., 307, pp. 193-201
  • Joshi, J.B., Patel, D., Morton, D.J., Sharma, P., Zou, J., Hewa Bostanthirige, D., Gorantla, Y., Sivils, J.C., Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52 (2017) Mol. Oncol., 11, pp. 337-357
  • Sahu, B., Laakso, M., Pihlajamaa, P., Ovaska, K., Sinielnikov, I., Hautaniemi, S., Janne, O.A., FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells (2013) Cancer Res, 73, pp. 1570-1580
  • Kach, J., Conzen, S.D., Szmulewitz, R.Z., Targeting the glucocorticoid receptor in breast and prostate cancers (2015) Sci. Transl. Med., 7
  • Yemelyanov, A., Czwornog, J., Chebotaev, D., Karseladze, A., Kulevitch, E., Yang, X., Budunova, I., Tumor suppressor activity of glucocorticoid receptor in the prostate (2007) Oncogene, 26, pp. 1885-1896
  • Leach, D.A., Trotta, A.P., Need, E.F., Risbridger, G.P., Taylor, R.A., Buchanan, G., The prognostic value of stromal FK506-binding protein 1 and androgen receptor in prostate cancer outcome (2017) Prostate, 77, pp. 185-195
  • Cheung-Flynn, J., Prapapanich, V., Cox, M.B., Riggs, D.L., Suarez-Quian, C., Smith, D.F., Physiological role for the cochaperone FKBP52 in androgen receptor signaling (2005) Mol. Endocrinol., 19, pp. 1654-1666
  • Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L.Y., Baskin, L.S., Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology (2007) J. Biol. Chem., 282, pp. 5026-5036
  • Yeh, S., Tsai, M.Y., Xu, Q., Mu, X.M., Lardy, H., Huang, K.E., Lin, H., Zhou, X., Generation and characterization of androgen receptor knockout (ARKO) mice: An in vivo model for the study of androgen functions in selective tissues (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 13498-13503
  • Sanchez, E.R., Chaperoning steroidal physiology: Lessons from mouse genetic models of Hsp90 and its cochaperones (2012) Biochim. Biophys. Acta, 1823, pp. 722-729
  • Riggs, D.L., Cox, M.B., Tardif, H.L., Hessling, M., Buchner, J., Smith, D.F., Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling (2007) Mol. Cell. Biol., 27, pp. 8658-8669
  • Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr. Opin. Pharmacol., 11, pp. 320-325
  • Russo, D., Merolla, F., Mascolo, M., Ilardi, G., Romano, S., Varricchio, S., Napolitano, V., Di Lorenzo, P.P., FKBP51 Immunohistochemical Expression: A New Prognostic Biomarker for OSCC? (2017) Int. J. Mol. Sci., 18, p. 443
  • Bonner, J.M., Boulianne, G.L., Diverse structures, functions and uses of FK506 binding proteins (2017) Cell Signal, 38, pp. 97-105
  • Huang, S.L., Chao, C.C., Silencing of Taxol-Sensitizer Genes in Cancer Cells: Lack of Sensitization Effects (2015) Cancers, 7, pp. 1052-1071
  • Rotoli, D., Morales, M., Del Carmen Maeso, M., Del Pino Garcia, M., Morales, A., Avila, J., Martin-Vasallo, P., Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy (2016) Oncol. Lett., 12, pp. 1315-1322
  • Rotoli, D., Morales, M., Avila, J., Maeso, M.D.C., Garcia, M.D.P., Mobasheri, A., Martin-Vasallo, P., Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy (2017) Int. J. Mol. Sci., 18
  • Liu, Y., Li, C., Xing, Z., Yuan, X., Wu, Y., Xu, M., Tu, K., Zhao, M., Proteomic mining in the dysplastic liver of WHV/c-myc mice--insights and indicators for early hepatocarcinogenesis (2010) FEBS J, 277, pp. 4039-4053
  • Xu, J., Lin, H., Li, G., Sun, Y., Chen, J., Shi, L., Cai, X., Chang, C., The miR-367-3p Increases Sorafenib Chemotherapy Efficacy to Suppress Hepatocellular Carcinoma Metastasis through Altering the Androgen Receptor Signals (2016) Ebiomedicine, 12, pp. 55-67
  • Sun, S.C., The non-canonical NF-κB pathway in immunity and inflammation (2017) Nat. Rev. Immunol., 17, pp. 545-558
  • Gilmore, T.D., Introduction to NF-κB: Players, pathways, perspectives (2006) Oncogene, 25, pp. 6680-6684
  • Mackenzie, G.G., Keen, C.L., Oteiza, P.I., Microtubules are required for NF-κB nuclear translocation in neuroblastoma IMR-32 cells: Modulation by zinc (2006) J. Neurochem., 99, pp. 402-415
  • Ghosh, S., Karin, M., Missing pieces in the NF-κB puzzle (2002) Cell, 109, pp. S81-S96
  • Gojoubori, T., Ota, H., Kusunoki, M., Nishio, Y., Nishio, K., Iwasa, S., Kaneko, Y., Asano, M., Electrolytically generated acid functional water inhibits NF-κB activity by attenuating nuclear-cytoplasmic shuttling of p65 and p50 subunits (2016) J. Recept. Signal Transduct. Res., 36, pp. 248-253
  • Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Lu, K.P., Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA (2003) Mol. Cell, 12, pp. 1413-1426
  • Wulf, G., Ryo, A., Liou, Y.C., Lu, K.P., The prolyl isomerase Pin1 in breast development and cancer (2003) Breast Cancer Res, 5, pp. 76-82
  • Wulf, G.M., Ryo, A., Wulf, G.G., Lee, S.W., Niu, T., Petkova, V., Lu, K.P., Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1 (2001) EMBO J, 20, pp. 3459-3472
  • Bao, L., Kimzey, A., Sauter, G., Sowadski, J.M., Lu, K.P., Wang, D.G., Prevalent overexpression of prolyl isomerase Pin1 in human cancers (2004) Am. J. Pathol., 164, pp. 1727-1737
  • Yoshimura, A., Mori, H., Ohishi, M., Aki, D., Hanada, T., Negative regulation of cytokine signaling influences inflammation (2003) Curr. Opin. Immunol., 15, pp. 704-708
  • Romano, S., Xiao, Y., Nakaya, M., D'angelillo, A., Chang, M., Jin, J., Hausch, F., Romano, M.F., FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma (2015) Nucleic Acids Res, 43, pp. 6983-6993
  • Romano, S., D'angelillo, A., Pacelli, R., Staibano, S., de Luna, E., Bisogni, R., Eskelinen, E.L., Arra, C., Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells (2010) Cell Death Differ, 17, pp. 145-157
  • Pei, H., Li, L., Fridley, B.L., Jenkins, G.D., Kalari, K.R., Lingle, W., Petersen, G., Wang, L., FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt (2009) Cancer Cell, 16, pp. 259-266
  • Luo, K., Li, Y., Yin, Y., Li, L., Wu, C., Chen, Y., Nowsheen, S., Lou, Z., USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling (2017) EMBO J, 36, pp. 1434-1446
  • Wang, L., FKBP51 regulation of AKT/protein kinase B phosphorylation (2011) Curr. Opin. Pharmacol., 11, pp. 360-364
  • Dogan, F., Biray Avci, C., Correlation between telomerase and mTOR pathway in cancer stem cells (2018) Gene, 641, pp. 235-239
  • Fruman, D.A., Chiu, H., Hopkins, B.D., Bagrodia, S., Cantley, L.C., Abraham, R.T., The PI3K Pathway in Human Disease (2017) Cell, 170, pp. 605-635
  • Koundouros, N., Poulogiannis, G., Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer (2018) Front. Oncol., 8
  • Hausch, F., Kozany, C., Theodoropoulou, M., Fabian, A.K., FKBPs and the Akt/mTOR pathway (2013) Cell Cycle, 12, pp. 2366-2370
  • Baretic, D., Williams, R.L., The structural basis for mTOR function (2014) Semin. Cell Dev. Biol., 36, pp. 91-101
  • Romano, S., Sorrentino, A., Di Pace, A.L., Nappo, G., Mercogliano, C., Romano, M.F., The emerging role of large immunophilin FK506 binding protein 51 in cancer (2011) Curr. Med. Chem., 18, pp. 5424-5429
  • Zaytseva, Y.Y., Valentino, J.D., Gulhati, P., Evers, B.M., MTOR inhibitors in cancer therapy (2012) Cancer Lett, 319, pp. 1-7
  • Liu, X., Duan, C., Ji, J., Zhang, T., Yuan, X., Zhang, Y., Ma, W., Jiang, Z., Cucurbitacin B induces autophagy and apoptosis by suppressing CIP2A/PP2A/mTORC1 signaling axis in human cisplatin resistant gastric cancer cells (2017) Oncol. Rep., 38, pp. 271-278
  • Cazzaniga, M., Verusio, C., Ciccarese, M., Fumagalli, A., Sartori, D., Ancona, C., Airoldi, M., Arcangeli, V., Everolimus (EVE) and exemestane (EXE) in patients with advanced breast cancer aged >/= 65 years: New lessons for clinical practice from the EVA study (2018) Oncotarget, 9
  • Hasskarl, J.E., (2018) Recent Results Cancer Res, 211, pp. 101-123
  • Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem., 286, pp. 30152-30160
  • Akiyama, T., Shiraishi, T., Qin, J., Konno, H., Akiyama, N., Shinzawa, M., Miyauchi, M., Ohashi, H., Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN (2014) PLOS ONE, 9
  • Toneatto, J., Guber, S., Charo, N.L., Susperreguy, S., Schwartz, J., Galigniana, M.D., Piwien-Pilipuk, G., Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation (2013) J. Cell Sci., 126, pp. 5357-5368
  • Fan, A.C., Young, J.C., Function of cytosolic chaperones in Tom70-mediated mitochondrial import (2011) Protein Pept. Lett., 18, pp. 122-131
  • Eisenstein, M., Telomeres: All's well that ends well (2011) Nature, 478, pp. S13-S15
  • Gomes, N.M., Shay, J.W., Wright, W.E., Telomere biology in Metazoa (2010) FEBS Lett, 584, pp. 3741-3751
  • Shore, D., Bianchi, A., Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase (2009) EMBO J, 28, pp. 2309-2322
  • Calado, R.T., Young, N.S., Telomere diseases (2009) New Engl. J. Med., 361, pp. 2353-2365
  • Harley, C.B., Telomerase and cancer therapeutics (2008) Nat. Rev. Cancer, 8, pp. 167-179
  • Masutomi, K., Kaneko, S., Hayashi, N., Yamashita, T., Shirota, Y., Kobayashi, K., Murakami, S., Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component (2000) J. Biol. Chem., 275, pp. 22568-22573
  • Forsythe, H.L., Jarvis, J.L., Turner, J.W., Elmore, L.W., Holt, S.E., Stable association of hsp90 and p23, but Not hsp70, with active human telomerase (2001) J. Biol. Chem., 276, pp. 15571-15574
  • Holt, S.E., Aisner, D.L., Baur, J., Tesmer, V.M., Dy, M., Ouellette, M., Trager, J.B., Shay, J.W., Functional requirement of p23 and Hsp90 in telomerase complexes (1999) Genes Dev, 13, pp. 817-826
  • Gaali, S., Kirschner, A., Cuboni, S., Hartmann, J., Kozany, C., Balsevich, G., Namendorf, C., Zannas, A.S., Selective inhibitors of the FK506-binding protein 51 by induced fit (2015) Nat. Chem. Biol., 11, pp. 33-37
  • Yao, Y.L., Liang, Y.C., Huang, H.H., Yang, W.M., FKBPs in chromatin modification and cancer (2011) Curr. Opin. Pharmacol., 11, pp. 301-307. , doi:S1471-4892(11)00044-0 [pii]
  • Stechschulte, L.A., Sanchez, E.R., FKBP51-a selective modulator of glucocorticoid and androgen sensitivity (2011) Curr. Opin. Pharmacol., 11, pp. 332-337
  • Leach, D.A., Buchanan, G., Stromal Androgen Receptor in Prostate Cancer Development and Progression (2017) Cancers, 9, p. 10
  • Kim, Y.S., Kim, Y.J., Lee, J.M., Kim, E.K., Park, Y.J., Choe, S.K., Ko, H.J., Kang, C.Y., Functional changes in myeloid-derived suppressor cells (MDSCs) during tumor growth: FKBP51 contributes to the regulation of the immunosuppressive function of MDSCs (2012) J. Immunol., 188, pp. 4226-4234
  • Li, L., Lou, Z., Wang, L., The role of FKBP5 in cancer aetiology and chemoresistance (2011) Br. J. Cancer, 104, pp. 19-23
  • Mukaide, H., Adachi, Y., Taketani, S., Iwasaki, M., Koike-Kiriyama, N., Shigematsu, A., Shi, M., Kamiyama, Y., FKBP51 expressed by both normal epithelial cells and adenocarcinoma of colon suppresses proliferation of colorectal adenocarcinoma (2008) Cancer Investig, 26, pp. 385-390
  • Amiri, A., Noei, F., Feroz, T., Lee, J.M., Geldanamycin anisimycins activate Rho and stimulate Rho-and ROCK-dependent actin stress fiber formation (2007) Mol. Cancer Res., 5, pp. 933-942
  • Le Boeuf, F., Houle, F., Sussman, M., Huot, J., Phosphorylation of focal adhesion kinase (FAK) on Ser732 is induced by rho-dependent kinase and is essential for proline-rich tyrosine kinase-2-mediated phosphorylation of FAK on Tyr407 in response to vascular endothelial growth factor (2006) Mol. Biol. Cell, 17, pp. 3508-3520
  • Takaoka, M., Ito, S., Miki, Y., Nakanishi, A., FKBP51 regulates cell motility and invasion via RhoA signaling (2017) Cancer Sci, 108, pp. 380-389
  • Ostrow, K.L., Park, H.L., Hoque, M.O., Kim, M.S., Liu, J., Argani, P., Westra, W., Sidransky, D., Pharmacologic unmasking of epigenetically silenced genes in breast cancer (2009) Clin. Cancer Res., 15, pp. 1184-1191
  • Pearson, J.D., Mohammed, Z., Bacani, J.T., Lai, R., Ingham, R.J., The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein (2012) BMC Cancer, 12
  • D'arrigo, P., Russo, M., Rea, A., Tufano, M., Guadagno, E., Del Basso De Caro, M.L.; Pacelli, R.; Hausch, F.; Staibano, S.; Ilardi, G.; et al. A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma (2017) Oncotarget, 8, pp. 68291-68304
  • Wirsching, H.G., Galanis, E., Weller, M., Glioblastoma (2016) Handb. Clin. Neurol., 134, pp. 381-397
  • Wang, L., Gundelach, J.H., Bram, R.J., Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme (2017) Cell Death Dis, 8
  • Ma, S., Boerner, J.E., Tiongyip, C., Weidmann, B., Ryder, N.S., Cooreman, M.P., Lin, K., NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with α interferon (2006) Antimicrob. Agents Chemother., 50, pp. 2976-2982
  • Duzgun, Z., Eroglu, Z., Biray Avci, C., Role of mTOR in glioblastoma (2016) Gene, 575, pp. 187-190
  • Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Warner, M., Estrogen receptors: How do they signal and what are their targets (2007) Physiol. Rev., 87, pp. 905-931
  • Donley, C., McClelland, K., McKeen, H.D., Nelson, L., Yakkundi, A., Jithesh, P.V., Burrows, J., Prise, K.M., Identification of RBCK1 as a novel regulator of FKBPL: Implications for tumor growth and response to tamoxifen (2014) Oncogene, 33, pp. 3441-3450
  • Nelson, L., McKeen, H.D., Marshall, A., Mulrane, L., Starczynski, J., Storr, S.J., Lanigan, F., Hegarty, S., FKBPL: A marker of good prognosis in breast cancer (2015) Oncotarget, 6
  • Renoir, J.M., Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches (2012) Steroids, 77, pp. 1249-1261
  • Renoir, J.M., Marsaud, V., Lazennec, G., Estrogen receptor signaling as a target for novel breast cancer therapeutics (2013) Biochem. Pharmacol., 85, pp. 449-465
  • Desmetz, C., Bascoul-Mollevi, C., Rochaix, P., Lamy, P.J., Kramar, A., Rouanet, P., Maudelonde, T., Solassol, J., Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women (2009) Clin. Cancer Res., 15, pp. 4733-4741
  • Dhamad, A.E., Zhou, Z., Zhou, J., Du, Y., Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor α (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction (2016) Plos ONE, 11
  • The Human Protein Atlas, , https://www.proteinatlas.org/ENSG00000004478-FKBP4/pathology, (accessed on 20 October 2018)
  • Garifulin, O.M., Kykot, V.O., Gridina, N.Y., Kiyamova, R.G., Gout, I.T., Filonenko, V.V., Application of serex-analysis for identification of human colon cancer antigens (2015) Exp. Oncol., 37, pp. 173-180
  • Duthie, K.A., Osborne, L.C., Foster, L.J., Abraham, N., Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Rα449F knock-in T cell progenitors (2007) Mol. Cell. Proteom., 6, pp. 1700-1710
  • Quinta, H.R., Galigniana, N.M., Erlejman, A.G., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., Management of cytoskeleton architecture by molecular chaperones and immunophilins (2011) Cell Signal, 23, pp. 1907-1920
  • Quinta, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol., 166, pp. 637-649
  • Ott, M., Litzenburger, U.M., Rauschenbach, K.J., Bunse, L., Ochs, K., Sahm, F., Pusch, S., von Deimling, A., Suppression of TDO-mediated tryptophan catabolism in glioblastoma cells by a steroid-responsive FKBP52-dependent pathway (2015) Glia, 63, pp. 78-90
  • Jiang, W., Cazacu, S., Xiang, C., Zenklusen, J.C., Fine, H.A., Berens, M., Armstrong, B., Mikkelsen, T., FK506 binding protein mediates glioma cell growth and sensitivity to rapamycin treatment by regulating NF-κB signaling pathway (2008) Neoplasia, 10, pp. 235-243
  • Lim, S.O., Park, S.J., Kim, W., Park, S.G., Kim, H.J., Kim, Y.I., Sohn, T.S., Jung, G., Proteome analysis of hepatocellular carcinoma (2002) Biochem. Biophys. Res. Commun., 291, pp. 1031-1037
  • Ruiz-Estevez, M., Staats, J., Paatela, E., Munson, D., Katoku-Kikyo, N., Yuan, C., Asakura, Y., Asakura, A., Promotion of Myoblast Differentiation by Fkbp5 via Cdk4 Isomerization (2018) Cell Rep, 25, pp. 2537-2551
  • Schulke, J.P., Wochnik, G.M., Lang-Rollin, I., Gassen, N.C., Knapp, R.T., Berning, B., Yassouridis, A., Rein, T., Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors (2010) Plos ONE, 5
  • Tranguch, S., Smith, D.F., Dey, S.K., Progesterone receptor requires a co-chaperone for signalling in uterine biology and implantation (2006) Reprod. Biomed. Online, 13, pp. 651-660
  • Hubler, T.R., Denny, W.B., Valentine, D.L., Cheung-Flynn, J., Smith, D.F., Scammell, J.G., The FK506-binding immunophilin FKBP51 is transcriptionally regulated by progestin and attenuates progestin responsiveness (2003) Endocrinology, 144, pp. 2380-2387
  • Febbo, P.G., Lowenberg, M., Thorner, A.R., Brown, M., Loda, M., Golub, T.R., Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer (2005) J. Urol., 173, pp. 1772-1777
  • Lagadari, M., Leo, S.A., Camisay, M.F., Galigniana, M.D., Erlejman, A.G., Regulation of NF-κB signalling cascade by immunophilins (2016) Curr. Mol. Pharmacol., 9, pp. 99-108
  • Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734
  • Jinwal, U.K., Koren, J., 3Rd, Borysov, S.I., Schmid, A.B., Abisambra, J.F., Blair, L.J., Johnson, A.G., O'leary, J.C., 3Rd, The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules (2010) J. Neurosci., 30, pp. 591-599
  • Chambraud, B., Sardin, E., Giustiniani, J., Dounane, O., Schumacher, M., Goedert, M., Baulieu, E.E., A role for FKBP52 in Tau protein function (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 2658-2663
  • Sanokawa-Akakura, R., Dai, H., Akakura, S., Weinstein, D., Fajardo, J.E., Lang, S.E., Wadsworth, S., Birge, R.B., A novel role for the immunophilin FKBP52 in copper transport (2004) J. Biol. Chem., 279, pp. 27845-27848
  • Zheng, W., Monnot, A.D., Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases (2012) Pharmacol. Ther., 133, pp. 177-188
  • Mills, E., Dong, X.P., Wang, F., Xu, H., Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders (2010) Future Med. Chem., 2, pp. 51-64
  • Warrier, M., Hinds, T.D., Jr., Ledford, K.J., Cash, H.A., Patel, P.R., Bowman, T.A., Stechschulte, L.A., Najjar, S.M., Susceptibility to diet-induced hepatic steatosis and glucocorticoid resistance in FK506-binding protein 52-deficient mice (2010) Endocrinology, 151, pp. 3225-3236
  • Rosen, E.D., Macdougald, O.A., Adipocyte differentiation from the inside out (2006) Nat. Rev. Mol. Cell Biol., 7, pp. 885-896
  • Nguyen, M.T., Csermely, P., Soti, C., Hsp90 chaperones PPARgamma and regulates differentiation and survival of 3T3-L1 adipocytes (2013) Cell Death Differ, 20, pp. 1654-1663
  • Desarzens, S., Liao, W.H., Mammi, C., Caprio, M., Faresse, N., Hsp90 blockers inhibit adipocyte differentiation and fat mass accumulation (2014) Plos ONE, 9
  • Verstraeten, V.L., Renes, J., Ramaekers, F.C., Kamps, M., Kuijpers, H.J., Verheyen, F., Wabitsch, M., Broers, J.L., Reorganization of the nuclear lamina and cytoskeleton in adipogenesis (2011) Histochem. Cell Biol., 135, pp. 251-261
  • D'angelo, M.A., Hetzer, M.W., The role of the nuclear envelope in cellular organization (2006) Cell. Mol. Life Sci., 63, pp. 316-332
  • Stuurman, N., Identification of a conserved phosphorylation site modulating nuclear lamin polymerization (1997) FEBS Lett, 401, pp. 171-174
  • Stechschulte, L.A., Hinds, T.D., Jr., Ghanem, S.S., Shou, W., Najjar, S.M., Sanchez, E.R., FKBP51 reciprocally regulates GRα and PPARgamma activation via the Akt-p38 pathway (2014) Mol. Endocrinol., 28, pp. 1254-1264
  • Stechschulte, L.A., Hinds, T.D., Jr., Khuder, S.S., Shou, W., Najjar, S.M., Sanchez, E.R., FKBP51 controls cellular adipogenesis through p38 kinase-mediated phosphorylation of GRα and PPARgamma (2014) Mol. Endocrinol., 28, pp. 1265-1275
  • Tontonoz, P., Spiegelman, B.M., Fat and beyond: The diverse biology of PPARgamma (2008) Annu. Rev. Biochem., 77, pp. 289-312
  • O'leary, J.C., 3Rd, Dharia, S., Blair, L.J., Brady, S., Johnson, A.G., Peters, M., Cheung-Flynn, J., Weeber, E.J., A new anti-depressive strategy for the elderly: Ablation of FKBP5/FKBP51 (2011) Plos ONE, 6
  • Touma, C., Gassen, N.C., Herrmann, L., Cheung-Flynn, J., Bull, D.R., Ionescu, I.A., Heinzmann, J.M., Depping, A.M., FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior (2011) Biol. Psychiatry, 70, pp. 928-936
  • Hartmann, J., Wagner, K.V., Liebl, C., Scharf, S.H., Wang, X.D., Wolf, M., Hausch, F., Touma, C., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress (2012) Neuropharmacology, 62, pp. 332-339
  • Stechschulte, L.A., Qiu, B., Warrier, M., Hinds, T.D., Jr., Zhang, M., Gu, H., Xu, Y., Najjar, S.M., FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARgamma Agonist Rosiglitazone (2016) Endocrinology, 157, pp. 3888-3900
  • Stepanova, L., Leng, X., Parker, S.B., Harper, J.W., Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4 (1996) Genes Dev, 10, pp. 1491-1502
  • Verba, K.A., Wang, R.Y., Arakawa, A., Liu, Y., Shirouzu, M., Yokoyama, S., Agard, D.A., Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase (2016) Science, 352, pp. 1542-1547
  • Hardwick, L.J.A., Azzarelli, R., Philpott, A., Cell cycle-dependent phosphorylation and regulation of cellular differentiation (2018) Biochem. Soc. Trans., 46, pp. 1083-1091
  • Scharf, S.H., Liebl, C., Binder, E.B., Schmidt, M.V., Muller, M.B., Expression and regulation of the Fkbp5 gene in the adult mouse brain (2011) Plos ONE, 6
  • Zannas, A.S., Wiechmann, T., Gassen, N.C., Binder, E.B., Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications (2016) Neuropsychopharmacology, 41, pp. 261-274
  • Fries, G.R., Gassen, N.C., Schmidt, U., Rein, T., The FKBP51-Glucocorticoid Receptor Balance in Stress-Related Mental Disorders (2015) Curr. Mol. Pharmacol., 9, pp. 126-140
  • Paquette, A.G., Lester, B.M., Koestler, D.C., Lesseur, C., Armstrong, D.A., Marsit, C.J., Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort (2014) Plos ONE, 9
  • Criado-Marrero, M., Rein, T., Binder, E.B., Porter, J.T., Koren, J., 3Rd, Blair, L.J., Hsp90 and FKBP51: Complex regulators of psychiatric diseases (2018) Philos. Trans. R. Soc. Lond. Ser. Biol. Sci., 373
  • Hartmann, J., Wagner, K.V., Gaali, S., Kirschner, A., Kozany, C., Ruhter, G., Dedic, N., Westerholz, S., Pharmacological Inhibition of the Psychiatric Risk Factor FKBP51 Has Anxiolytic Properties (2015) J. Neurosci., 35, pp. 9007-9016
  • Ising, M., Depping, A.M., Siebertz, A., Lucae, S., Unschuld, P.G., Kloiber, S., Horstmann, S., Holsboer, F., Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls (2008) Eur. J. Neurosci., 28, pp. 389-398
  • Mahon, P.B., Zandi, P.P., Potash, J.B., Nestadt, G., Wand, G.S., Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults (2013) Psychopharmacology, 227, pp. 231-241
  • Shibuya, N., Suzuki, A., Sadahiro, R., Kamata, M., Matsumoto, Y., Goto, K., Hozumi, Y., Otani, K., Association study between a functional polymorphism of FK506-binding protein 51 (FKBP5) gene and personality traits in healthy subjects (2010) Neurosci. Lett., 485, pp. 194-197
  • Fani, N., King, T.Z., Reiser, E., Binder, E.B., Jovanovic, T., Bradley, B., Ressler, K.J., FKBP5 genotype and structural integrity of the posterior cingulum (2014) Neuropsychopharmacology, 39, pp. 1206-1213
  • Fani, N., Gutman, D., Tone, E.B., Almli, L., Mercer, K.B., Davis, J., Glover, E., Dinov, I.D., FKBP5 and attention bias for threat: Associations with hippocampal function and shape (2013) JAMA Psychiatry, 70, pp. 392-400
  • Fujii, T., Ota, M., Hori, H., Hattori, K., Teraishi, T., Sasayama, D., Higuchi, T., Kunugi, H., Association between the common functional FKBP5 variant (Rs1360780) and brain structure in a non-clinical population (2014) J. Psychiatr. Res., 58, pp. 96-101
  • Levy-Gigi, E., Szabo, C., Kelemen, O., Keri, S., Association among clinical response, hippocampal volume, and FKBP5 gene expression in individuals with posttraumatic stress disorder receiving cognitive behavioral therapy (2013) Biol. Psychiatry, 74, pp. 793-800
  • White, M.G., Bogdan, R., Fisher, P.M., Munoz, K.E., Williamson, D.E., Hariri, A.R., FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity (2012) Genesbrainand Behav, 11, pp. 869-878
  • Klengel, T., Binder, E.B., Allele-specific epigenetic modification: A molecular mechanism for gene-environment interactions in stress-related psychiatric disorders? (2013) Epigenomics, 5, pp. 109-112
  • Pohlmann, M.L., Hausl, A.S., Harbich, D., Balsevich, G., Engelhardt, C., Feng, X., Breitsamer, M., Schmidt, M.V., Pharmacological Modulation of the Psychiatric Risk Factor FKBP51 Alters Efficiency of Common Antidepressant Drugs (2018) Front. Behav. Neurosci., 12
  • Gassen, N.C., Fries, G.R., Zannas, A.S., Hartmann, J., Zschocke, J., Hafner, K., Carrillo-Roa, T., Hoeijmakers, L., Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine (2015) Sci. Signal., 8
  • Gassen, N.C., Hartmann, J., Zannas, A.S., Kretzschmar, A., Zschocke, J., Maccarrone, G., Hafner, K., Wagner, K.V., FKBP51 inhibits GSK3beta and augments the effects of distinct psychotropic medications (2016) Mol. Psychiatry, 21, pp. 277-289

Citas:

---------- APA ----------
Zgajnar, N.R., De Leo, S.A., Lotufo, C.M., Erlejman, A.G., Pilipuk, G.P. & Galigniana, M.D. (2019) . Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52. Biomolecules, 9(2).
http://dx.doi.org/10.3390/biom9020052
---------- CHICAGO ----------
Zgajnar, N.R., De Leo, S.A., Lotufo, C.M., Erlejman, A.G., Pilipuk, G.P., Galigniana, M.D. "Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52" . Biomolecules 9, no. 2 (2019).
http://dx.doi.org/10.3390/biom9020052
---------- MLA ----------
Zgajnar, N.R., De Leo, S.A., Lotufo, C.M., Erlejman, A.G., Pilipuk, G.P., Galigniana, M.D. "Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52" . Biomolecules, vol. 9, no. 2, 2019.
http://dx.doi.org/10.3390/biom9020052
---------- VANCOUVER ----------
Zgajnar, N.R., De Leo, S.A., Lotufo, C.M., Erlejman, A.G., Pilipuk, G.P., Galigniana, M.D. Biological actions of the hsp90-binding immunophilins FKBP51 and FKBP52. Biomolecules. 2019;9(2).
http://dx.doi.org/10.3390/biom9020052