Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cyclodextrins (CDs) are cyclic oligosaccharides composed of linked glucopyranose subunits. The main property of CDs is that their hydrophobic inner cavity forms inclusion complexes with a wide range of guest molecules, while the hydrophilic exterior enhances CD solubility in water. Because of their molecular inclusion capability, the properties of the materials with which they complex can be significantly modified. Particularly, solubility and stability of bioactive compounds to be used as nutraceuticals, could be improved by encapsulation in CDs. The available thermodynamic data are consistent with an exothermic and spontaneous inclusion processes. Phase solubility studies in liquid systems along with studies of physical properties of solids complex, help to elucidate complex stoichiometry and guest–CD interactions. The use of CD-complexes for improving molecules solubility and stability, for control release and as adjuvant in extraction processes, represents a promising innovative strategy in the food industry for the development of new ingredients and products. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Novel trends in cyclodextrins encapsulation. Applications in food science
Autor:dos Santos, C.; Buera, P.; Mazzobre, F.
Filiación:Universidad de Buenos Aires, de Ciencias Exactas y Naturales Ciudad Universitaria Departamento de Industrias y Departamento de Orgánica, Facultad – Intendente Guiraldes 2160, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Año:2017
Volumen:16
Página de inicio:106
Página de fin:113
DOI: http://dx.doi.org/10.1016/j.cofs.2017.09.002
Título revista:Current Opinion in Food Science
Título revista abreviado:Curr. Opin. Food Sci.
ISSN:22147993
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22147993_v16_n_p106_dosSantos

Referencias:

  • Magnusdottier, M., Másson, M., Loftsson, T., Cyclodextrins (2002) J Incl Phenom Macroc Chem, 44, pp. 213-218
  • Marques, H.M.C., A review on cyclodextrin encapsulation of essential oils and volatiles (2010) Flavour Fragr J, 25, pp. 313-326
  • Del Valle, E.M.M., Cyclodextrins and their uses: a review (2004) Process Biochem, 39, pp. 1033-1046
  • Brewster, M.E., Loftsson, T., Cyclodextrins as pharmaceutical solubilizers (2007) Adv Drug Deliv Rev, 59, pp. 645-666
  • Szente, L., Szejtli, J., Cyclodextrins as food ingredients (2004) Trends Food Sci Technol, 15, pp. 137-142
  • Fenyvesi, É., Vikmon, M., Szente, L., Cyclodextrins in food technology and human nutrition: benefits and limitations in 2012 (2015) Crit Rev Food Sci Nutr, , This article evaluates the use of α β and γ cyclodextrins as bioactive food supplements and nutraceuticals. The mechanisms behind these effects are reviewed together with their applications as solubilizers and stabilizers of dietary compounds such as unsaturated fatty acids, phytosterols, vitamins, flavonoids, carotenoids among others. Cyclodextrins versatility is based on their unique structure that enables them to form inclusion complexes with molecules of low hydrophilicity and proper geometrical size
  • Moreira Da-Silva, A., Cyclodextrins as food additives and ingredients: nutraceutical applications (2015) Researchgate Net, pp. 1-6. , Cyclodextrins allow a nanoencapsulation of different compounds at molecular level. Food ingredients formulated with cyclodextrins are stabilized against oxidation and heat. Food industry employs natural cyclodextrins with different goals. Whilst α-cyclodextrin acts as a prebiotic, β-cyclodextrin and γ-cyclodextrin are used in very diverse applications due to their ability to form inclusion compounds or complexes. Actually cyclodextrins are being used in the food and nutraceutical markets to solve stability, taste and odour problems of special ingredients
  • Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., A review on the use of cyclodextrins in foods (2009) Food Hydrocoll, 23, pp. 1631-1640
  • Fang, Z., Bhandari, B., encapsulation of polyphenols – a review (2010) Trends Food Sci Technol, 21, pp. 510-523
  • Hedges, A.R., Industrial applications of cyclodextrins (1998) Chem Rev, 98, pp. 2035-2044
  • Lindner, K., Saenger, W., Topography of cyclodextrin inclusion complexes. XVI.* Cyclic system of hydrogen bonds: structure of o∼-cyclodextrin hexahydrate, form (II): comparison with form (I) (1982) Acta Crystallogr, B38, pp. 203-210
  • Tommasini, S., Raneri, D., Ficarra, R., Calabrò, M.L., Stancanelli, R., Ficarra, P., Improvement in solubility and dissolution rate of flavonoids by complexation with beta-cyclodextrin (2004) J Pharm Biomed Anal, 35, pp. 379-387
  • Ünlüsayin, M., Hădărugă, N.G., Rusu, G., Gruia, A.T., Păunescu, V., Hădărugă, D.I., Nano-encapsulation competitiveness of omega-3 fatty acids and correlations of thermal analysis and Karl Fischer water titration for European anchovy (Engraulis encrasicolus L.) oil/β-cyclodextrin complexes (2016) LWT – Food Sci Technol, 68, pp. 135-144
  • Szejtli, J., Introduction and general overview of cyclodextrin chemistry (1998) Chem Rev, 98, pp. 1743-1753
  • Mazzobre, M.F., dos Santos, C.I., Buera, M.P., Solubility and stability of β-cyclodextrin–terpineol inclusion complex as affected by water (2011) Food Biophys, 6, pp. 274-280
  • dos Santos, C., Buera, M.P., Mazzobre, M.F., Influence of ligand structure and water interactions on the physical properties of β-cyclodextrins complexes (2012) Food Chem, 132, pp. 2030-2036
  • Rekharsky, M.V., Inoue, Y., Complexation thermodynamics of cyclodextrins (1998) Chem Rev, 98, pp. 1875-1917. , The inclusion complexation of guest molecules by cyclodextrins in aqueous solutions results in a substantial rearrangement and removal of the water molecules originally solvated to both the cyclodextrin and guest molecules, and this process also induces the release of water molecules from the cyclodextrin cavity into the bulk water. The binding is given mainly by van der Waals and hydrophobic interactions, although hydrogen bonding and steric effects are also important. The thermodynamic magnitudes obtained for complexes formation in cyclodextrins are a consequence of the weighted contributions of all these interactions
  • Comino, P., Fang, Z., Bhandari, B., The sorption isotherm properties of limonene-β-cyclodextrin complex powder (2013) LWT – Food Sci Technol, 51, pp. 164-169
  • Sheokand, S., Modi, S.R., Bansal, A.K., Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials (2014) J Pharm Sci, 103, pp. 3364-3376
  • Higuchi, T., Connors, K., Phase solubility techniques (1965) Adv Anal Chem Instrum, 4, pp. 117-122
  • Stancanelli, R., Crupi, V., De Luca, L., Ficarra, P., Ficarra, R., Gitto, R., Guardo, M., Tommasini, S., Improvement of water solubility of non-competitive AMPA receptor antagonists by complexation with beta-cyclodextrin (2008) Bioorg Med Chem, 16, pp. 8706-8712
  • Connors, K., Binding Constants: The Measurement of Molecular Complex Stability (1987), Wyley and Sons Pub. New York; Dodziuk, H., Molecules With Holes – Cyclodextrins (2006), VWILEY-VCH Verlag GmbH & Co. KGaA Despite the numerous and diverse successful applications of cyclodextrins, the mechanism of complexation and the relationship between structure and selectivity are still only partly solved and remain open for discussion. Thermodynamic studies could supply valuable information facilitating an understanding of the physico-chemical basis of the complexation processes; Mura, P., Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review (2015) J Pharm Biomed Anal, 113, pp. 226-238
  • Abarca, R.L., Rodríguez, F.J., Guarda, A., Galotto, M.J., Bruna, J.E., Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component (2016) Food Chem, 196, pp. 968-975
  • Gong, L., Li, T., Chen, F., Duan, X., Yuan, Y., Zhang, D., Jiang, Y., Corrigendum to “An inclusion complex of eugenol into β-cyclodextrin: preparation, and physicochemical and antifungal characterization” (2016) Food Chem, 206, p. 292
  • Mourtzinos, I., Kalogeropoulos, N., Papadakis, S.E., Konstantinou, K., Karathanos, V.T., Encapsulation of nutraceutical monoterpenes in beta-cyclodextrin and modified starch (2008) J Food Sci, 73, pp. S89-S94
  • Braesicke, K., Steiner, T., Saenger, W., Knapp, E.W., Diffusion of water molecules in crystalline beta-cyclodextrin hydrates (2000) J Mol Graph Model, 3263, pp. 143-152
  • dos Santos Ferreira, C.I., Encapsulation of Food Ingredients in Cyclodextrins and Their Possible Applications (2017), (Ph.D. thesis) Buenos Aires University Argentina; Mazzobre, M.F., Elizalde, B., dos Santos, C., Ponce Cevallos, P., Buera, M.P., Nanoencapsulation of food ingredients in cyclodextrins: effect of water interactions and ligand structure (2009) Funcional Food Product Development, , J. Smith E. Charter Blackwell Publishing Limited
  • Cevallos, P.A.P., Buera, M.P., Elizalde, B.E., Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex (2014) J Food Eng, 99, pp. 70-75
  • Giordano, F., Novak, C., Moyano, J.R., Thermal analysis of cyclodextrins and their inclusion compounds (2001) Thermochim Acta, 380, pp. 123-151. , Thermal methods have been used and currently employed as a powerful tool for cyclodextrins complexes characterization. Quantitative evaluation of fusion enthalpy or heat capacity of the guest compound can afford highly valuable information. Although the real proof of the guest inclusion in cyclodexrtin is achieved by determining the crystal structure of the complex, thermal methods can provide fast and reliable assessment of possible interactions between host and guest and are used routinely for this purpose
  • Karathanos, V.T., Mourtzinos, I., Yannakopoulou, K., Andrikopoulos, N.K., Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin (2007) Food Chem, 101, pp. 652-658
  • Pralhad, T., Rajendrakumar, K., Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis (2004) J Pharm Biomed Anal, 34, pp. 333-339
  • Mourtzinos, I., Konteles, S., Kalogeropoulos, N., Karathanos, V.T., Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties (2009) Food Chem, 114, pp. 791-797
  • dos Santos, C., Buera, M.P., Mazzobre, M.F., Phase solubility studies and stability of cholesterol/beta-cyclodextrin inclusion complexes (2011) J Sci Food Agric, 91, pp. 2551-2557
  • Williams, D.H., Stephens, E., O'Brien, D.P., Zhou, M., Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes (2004) Angew Chem Int Ed Engl, 43, pp. 6596-6616
  • Gao, F., Zhou, T., Hu, Y., Lan, L., Vander Heyden, Y., Crommen, J., Lu, G., Fan, G., Cyclodextrin-based ultrasonic-assisted microwave extraction and HPLC-PDA-ESI-ITMSn separation and identification of hydrophilic and hydrophobic components of Polygonum cuspidatum: a green, rapid and effective process (2016) Ind Crops Prod, 80, pp. 59-69. , Complexation in cyclodextrin allows improving the extraction efficiency of natural compounds from plant matrices enhancing their solubility, stability and/or bioavailability. Extraction of phenolic compounds from plants with aqueous cyclodextrin solutions has been demonstrated as an efficient and green extraction process. In brief, cyclodextrins are an environmentally friendly additive for the rapid and effective extraction of both hydrophilic and hydrofobic compounds
  • Hadi, B.J., Sanagi, M.M., Wan Ibrahim, W.A., Jamil, S., AbdullahiMu'azu, M., Aboul-Enein, H.Y., Ultrasonic-assisted extraction of curcumin complexed with methyl-β-cyclodextrin (2015) Food Anal Methods, 8, pp. 1373-1381
  • Diamanti, A.C., Igoumenidis, P.E., Mourtzinos, I., Yannakopoulou, K., Karathanos, V.T., Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins (2017) Food Chem, 214, pp. 61-66
  • Mantegna, S., Binello, A., Boffa, L., Giorgis, M., Cena, C., Cravotto, G., A one-pot ultrasound-assisted water extraction/cyclodextrin encapsulation of resveratrol from Polygonum cuspidatum (2012) Food Chem, 130, pp. 746-750
  • Parmar, I., Sharma, S., Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology (2015) J Food Sci Technol, 52, pp. 2202-2210
  • Lopez-Miranda, S., Serrano-Martinez, A., Hernandez-Sanchez, P., Guardiola, L., Perez, H., Fortea, I., Gabaldon, J.A., Nuñez-Delicado, E., Use of cyclodextrins to recover catechin and epicatechin from red grape pomace (2016) Food Chem
  • Ratnasooriya, C.C., Rupasinghe, H.P.V., Extraction of phenolic compounds from grapes and their pomace using β-cyclodextrin (2012) Food Chem, 134, pp. 625-631
  • Cui, L., Liu, Y., Liu, T., Yuan, Y., Yue, T., Cai, R., Wang, Z., Extraction of epigallocatechin gallate and epicatechin gallate from tea leaves using β-cyclodextrin (2017) J Food Sci, pp. 1-7
  • Gerber, G.S., Phytotherapy for benign prostatic hyperplasia (2002) Curr Urol Rep, 3, pp. 285-291
  • Moreau, R.A., Whitaker, B.D., Hicks, K.B., Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses (2002) Prog Lipid Res, 41, pp. 457-500
  • Polagruto, J.A., Wang-Polagruto, J.F., Braun, M.M., Lee, L., Kwik-Uribe, C., Keen, C.L., Cocoa flavanol-enriched snack bars containing phytosterols effectively lower total and low-density lipoprotein cholesterol levels (2006) J Am Diet Assoc, 106, pp. 1804-1813
  • Woyengo, T., Ramprasath, V.R., Jones, P.J.H., Anticancer effects of phytosterols (2009) Eur J Clin Nutr, 63, pp. 813-820
  • Banskota, A.H., Nagaoka, T., Sumioka, L.Y., Tezuka, Y., Awale, S., Midorikawa, K., Matsushige, K., Kadota, S., Antiproliferative activity of the Netherlands propolis and its active principles in cancer cell lines (2002) J Ethnopharmacol, 80, pp. 67-73
  • Barbarić, M., Mišković, K., Bojić, M., Lončar, M.B., Smolčić-Bubalo, A., Debeljak, Z., Medić-Šarić, M., Chemical composition of the ethanolic propolis extracts and its effect on HeLa cells (2011) J Ethnopharmacol, 135, pp. 772-778
  • Uzel, A., Sorkun, K., Önçağ, Ö., Çoğulu, D., Gençay, Ö., Salih, B., Chemical compositions and antimicrobial activities of four different Anatolian propolis samples (2005) Microbiol Res, 160, pp. 189-195
  • Kurek-Górecka, A., Rzepecka-Stojko, A., Górecki, M., Stojko, J., Sosada, M., Swierczek-Zieba, G., Structure and antioxidant activity of polyphenols derived from propolis (2013) Molecules, 19, pp. 78-101
  • Sforcin, J.M., Bankova, V., Propolis: is there a potential for the development of new drugs? (2011) J Ethnopharmacol, 133, pp. 253-260
  • Huang, S., Zhang, C.-P., Wang, K., Li, G.Q., Hu, F.-L., Recent advances in the chemical composition of propolis (2014) Molecules, 19, pp. 19610-19632
  • Kubiliene, L., Laugaliene, V., Pavilonis, A., Maruska, A., Majiene, D., Barcauskaite, K., Kubilius, R., Savickas, A., Alternative preparation of propolis extracts: comparison of their composition and biological activities (2015) BMC Complement Altern Med, 15, p. 156
  • Wagh, V.D., Propolis: a wonder bees product and its pharmacological potentials (2013) Adv Pharmacol Sci, p. 2013
  • Farré, R., Frasquet, I., Sánchez, A., Propolis and human health (2004) ARS Pharm, 45, pp. 21-43
  • Zhou, S.-Y., Ma, S.-X., Cheng, H.-L., Yang, L.-J., Chen, W., Yin, Y.-Q., Shi, Y.-M., Yang, X.-D., Host–guest interaction between pinocembrin and cyclodextrins: characterization, solubilization and stability (2014) J Mol Struct, 1058, pp. 181-188
  • Kalogeropoulos, N., Konteles, S., Mourtzinos, I., Troullidou, E., Chiou, A., Karathanos, V.T., Encapsulation of complex extracts in beta-cyclodextrin: an application to propolis ethanolic extract (2009) J Microencapsul, 26, pp. 603-613
  • Coneac, G., Gafi, E., Nicoleta, G.H., Daniel, I.H., Propolis extract/β-cyclodextrin nanoparticles: synthesis, physico-chemical, and multivariate analyses (2008) J Agroaliment Process Technol, 14, pp. 58-70
  • Cannavà, C., Crupi, V., Ficarra, P., Guardo, M., Majolino, D., Mazzaglia, A., Stancanelli, R., Venuti, V., Physico-chemical characterization of an amphiphilic cyclodextrin/genistein complex (2010) J Pharm Biomed Anal, 51, pp. 1064-1068
  • Mercader-Ros, M.T., Lucas-Abellán, C., Fortea, M.I., Gabaldón, J.A., Núñez-Delicado, E., Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols (2010) Food Chem, 118, pp. 769-773
  • di Cagno, M., The potential of cyclodextrins as novel active pharmaceutical ingredients: a short overview (2017) Molecules, 9, pp. 1-14
  • Saha, S., Roy, A., Roy, K., Roy, M.N., Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules (2016) Sci Rep, 6, p. 35764
  • Laokuldilok, N., Thakeow, P., Kopermsub, P., Utama-ang, N., Optimisation of microencapsulation of turmeric extract for masking flavour (2016) Food Chem, 194, pp. 695-704
  • Donovan, J.D., Cadwallader, K.R., Lee, Y., Volatile retention and morphological properties of microencapsulated tributyrin varied by wall material and drying method (2016) J Food Sci, 81, pp. E643-E650
  • Jeong, H., Sun, H., Chogsom, C., Kwak, H.S., Cholesterol removal from whole egg by crosslinked β-cyclodextrin (2014) Asian-Australasian J Anim Sci, 27, pp. 537-542
  • Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L., Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes (2007) Int J Pharm, 338, pp. 35-42
  • di Cagno, M., Larsen, K.L., Kuntsche, J., Bauer-brandl, A., β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs (2014) Int J Pharm, 468, pp. 258-263
  • Stelzl, D., Terndrup, T., Terkel, N., di Cagno, M., β-CD-dextran polymer for efficient sequestration of cholesterol from phospholipid bilayers: mechanistic and safe-toxicity investigations (2015) Int J Pharm
  • Santagapita, P.R., Brizuela, L.G., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Santana, R.V., Buera, M.P., β-Cyclodextrin modifications as related to enzyme stability in dehydrated systems: supramolecular transitions and molecular interactions (2011) Carbohydr Polym, 83, pp. 203-209
  • Trapani, A., Garcia-Fuentes, M., Alonso, M.J., Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan (2008) Nanotechnology, 19, p. 185101. , 10pp
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromolecules, 12, pp. 3147-3155
  • Villalonga, R., Cao, R., Fragoso, A., Supramolecular chemistry of cyclodextrins in enzyme technology (2007) Chem Rev, 107, pp. 3088-3116

Citas:

---------- APA ----------
dos Santos, C., Buera, P. & Mazzobre, F. (2017) . Novel trends in cyclodextrins encapsulation. Applications in food science. Current Opinion in Food Science, 16, 106-113.
http://dx.doi.org/10.1016/j.cofs.2017.09.002
---------- CHICAGO ----------
dos Santos, C., Buera, P., Mazzobre, F. "Novel trends in cyclodextrins encapsulation. Applications in food science" . Current Opinion in Food Science 16 (2017) : 106-113.
http://dx.doi.org/10.1016/j.cofs.2017.09.002
---------- MLA ----------
dos Santos, C., Buera, P., Mazzobre, F. "Novel trends in cyclodextrins encapsulation. Applications in food science" . Current Opinion in Food Science, vol. 16, 2017, pp. 106-113.
http://dx.doi.org/10.1016/j.cofs.2017.09.002
---------- VANCOUVER ----------
dos Santos, C., Buera, P., Mazzobre, F. Novel trends in cyclodextrins encapsulation. Applications in food science. Curr. Opin. Food Sci. 2017;16:106-113.
http://dx.doi.org/10.1016/j.cofs.2017.09.002