Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Non-Riemannian generalization of the standard Born–Infeld (BI) Lagrangian is introduced and analyzed from a theory of gravitation with dynamical torsion field. The field equations derived from the proposed action lead to a trace free gravitational equation (non-Riemannian analog to the trace free equation (TFE) from Finkelstein et al., 2001; Ellis et al., 2011; Ellis, 2014) and the field equations for the torsion respectively. In this theoretical context, the fundamental constants arise all from the same geometry through geometrical invariant quantities (as from the curvature R). New results involving generation of primordial magnetic fields and the link with leptogenesis and baryogenesis are presented and possible explanations given. The physically admissible matter fields can be introduced in the model via the torsion vector hμ. Such fields include some dark matter candidates such as axion, right neutrinos and Majorana and moreover, physical observables as vorticity can be included in the same way. From a new wormhole solution in a cosmological spacetime with torsion we also show that the primordial cosmic magnetic fields can originate from hμ with the axion field (that is contained in hμ) the responsible to control the dynamics and stability of the cosmic magnetic field but not the magnetogenesis itself. As we pointed out before (Cirilo-Lombardo, 2017), the analysis of Grand Unified Theories (GUT) in the context of this model indicates that the group manifold candidates are based in SO(10), SU(5) or some exceptional groups as E(6), E(7), etc. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations
Autor:Cirilo-Lombardo, D.J.
Filiación:Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), National Institute of Plasma Physics (INFIP), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
Año:2017
Volumen:16
Página de inicio:1
Página de fin:14
DOI: http://dx.doi.org/10.1016/j.jheap.2017.08.001
Título revista:Journal of High Energy Astrophysics
Título revista abreviado:J. High Energy Astrophys.
ISSN:22144048
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22144048_v16_n_p1_CiriloLombardo

Referencias:

  • Alvarez-Castillo, D., Cirilo-Lombardo, D.J., Zamora-Saa, J., Solar neutrinos, helicity effects and new affine gravity with torsion II (2017) J. High Energy Astrophys., 13-14, pp. 10-16
  • Barcelo, C., Carballo-Rubio, R., Garay, L.J., (2014) Phys. Rev. D, 89
  • Barrau, A., Linsefors, L., (2014) J. Cosmol. Astropart. Phys., 12
  • Blackett, P.M.S., (1947) Nature, 159, p. 658
  • Bronnikov, K.A., Galiakhmetov, A.M., (2015) Gravit. Cosmol., 21 (4), pp. 283-288
  • Carballo-Rubio, R., (2015) Phys. Rev. D, 91
  • Carter, B., (1968) Commun. Math. Phys., 10, p. 280
  • Cirilo-Lombardo, D.J., (2005) Class. Quantum Gravity, 22, pp. 4987-5004
  • Cirilo-Lombardo, D.J., Class. Quantum Gravity (2007) J. Math. Phys., 48, p. 032301
  • Cirilo-Lombardo, D.J., (2010) Int. J. Theor. Phys., 49, p. 1288
  • Cirilo-Lombardo, D.J., (2011) Int. J. Theor. Phys., 50, p. 1699
  • Cirilo-Lombardo, D.J., (2011) Int. J. Theor. Phys., 50, p. 3621
  • Cirilo-Lombardo, D.J., (2013) Astropart. Phys., 50-52, p. 51
  • Cirilo-Lombardo, D.J., (2015) Int. J. Theor. Phys., 54 (10), pp. 3713-3727
  • Cirilo-Lombardo, D.J., (2017) Int. J. Geom. Methods Mod. Phys., 14 (7)
  • Cirilo-Lombardo, D.J. Work in preparation; Einstein, A., The Meaning of Relativity: Including the Relativistic Theory of the Non-Symmetric Field (2014), PUP, Princeton Science Library; Ellis, G., (2014) Gen. Relativ. Gravit., 46, p. 1619
  • Ellis, J., Mavromatos, N.E., (2013) Phys. Rev. D, 88 (8)
  • Ellis, G.F.R., van Elst, H., Murugan, J., Uzan, J.-P., (2011) Class. Quantum Gravity, 28
  • Finkelstein, D.R., Galiautdinov, A.A., Baugh, J.E., (2001) J. Math. Phys., 42, pp. 340-346
  • Firouzjaee, J.T., Ellis, G.F.R., (2015) Phys. Rev. D, 91
  • Green, M.B., Schwartz, J.H., Witten, E., Superstring Theory I and II (1987) Cambridge Monogr. Math. Phys, , Cambridge University Press
  • Hawking, S.W., Ellis, G.F.R., The Large Scale Structure of Spacetime (1973), Cambridge University Press, CUP England; Helmholtz, H., Über Integrale der Hydrodynamischen Gleichungen, Welche den Wirbelbewegungen Entsprechen (1858) J. Reine Angew. Math., 1858 (55), pp. 25-55
  • Helmholtz, H., On integrals of the hydrodynamical equations, which express vortex-motion (1867) Philos. Mag., 33 (226), pp. 485-512
  • Jain, P., Kashyap, G., Mitra, S., (2015) Int. J. Mod. Phys. A, 30
  • Joyce, M., Shaposhnikov, M., (1997) Phys. Rev. Lett., 79, p. 1193
  • Kalb, M., Ramond, P., (1974) Phys. Rev. D, 9, p. 2273
  • Kharzeev, D., (2010) Ann. Phys., 325, p. 2015
  • Kolb, E., Turner, M., The Early Universe, Frontiers in Physics (Book 69) (1994), Westview Press; Macdonald, D., Thorne, K., (1982) Mon. Not. R. Astron. Soc., 198, p. 345
  • Mansouri, F., (1976) Phys. Rev. D, 13, p. 3192
  • Markov, M.A., (1984) Ann. Phys., 155, pp. 333-357
  • McInnes, B., (1984) Class. Quantum Gravity, 1, pp. 105-113
  • Ogievetsky, V.I., Polubarinov, I.V., Notoph and photon, preprint JINR P-2330 (unpublished) (1965); Ogievetsky, V.I., Polubarinov, I.V., (1967) Sov. J. Nucl. Phys., 4, p. 156
  • Rädler, K.-H., Rheinhardt, M., (2007) Geophys. Astrophys. Fluid Dyn., 101 (2), pp. 117-154
  • Thorne, K., Macdonald, D., (1982) Mon. Not. R. Astron. Soc., 198, p. 339
  • Velten, H.E.S., vom Marttens, R.F., Zimdahl, W., (2014) Eur. Phys. J. C, 74 (11), p. 3160
  • Weyl, H., Space–Time-Matter (1952), Dover; Wilzcek, F., (1987) Phys. Rev. Lett., 58, p. 1799
  • Xin, Y., General Relativity on Spinor-Tensor Manifold (1996) Quantum Gravity – Int. School on Cosmology & Gravitation, XIV Course, pp. 382-411. , P.G. Bergman V. de Sabbata H.J. Treder World Scientific
  • Yano, K., (1952) Ann. Math., 55, p. 328

Citas:

---------- APA ----------
(2017) . Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations. Journal of High Energy Astrophysics, 16, 1-14.
http://dx.doi.org/10.1016/j.jheap.2017.08.001
---------- CHICAGO ----------
Cirilo-Lombardo, D.J. "Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations" . Journal of High Energy Astrophysics 16 (2017) : 1-14.
http://dx.doi.org/10.1016/j.jheap.2017.08.001
---------- MLA ----------
Cirilo-Lombardo, D.J. "Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations" . Journal of High Energy Astrophysics, vol. 16, 2017, pp. 1-14.
http://dx.doi.org/10.1016/j.jheap.2017.08.001
---------- VANCOUVER ----------
Cirilo-Lombardo, D.J. Non-Riemannian geometry, Born–Infeld models and trace free gravitational equations. J. High Energy Astrophys. 2017;16:1-14.
http://dx.doi.org/10.1016/j.jheap.2017.08.001