Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several samples of pure and Al-substituted akaganeites with somatoid (SOM), rod-like (ROD) and nano-crystals (NANO) morphologies were synthesized and fully characterized. The specific surface areas and the total pore volume varied in the trend SOM < ROD < NANO, and both values were enlarged by the Al-substitution. All samples were mesoporous solids with pore and modal size range following the trend SOM > ROD > NANO. This parameter remained unchanged with Al-substitution in SOM-akaganeite but it increased in ROD-akaganeites. The performance on the As(V) adsorption properties was also evaluated. The amount of As(V) adsorbed by NANO (mmol g-1) at saturation (Γmax) was three times larger than the correspondent to SOM. The pure and Al-SOM exhibited the highest Γmax (mmol m-2) indicating a highest surface reactivity towards As-adsorption. Taking into account these marked differences in the As(V) adsorption capacity of the various akaganeites, and their similarities in the structure, chemical composition and surface charge, it can be concluded that the textural characteristics are the main determinant of the adsorption properties. © 2018 Published by Elsevier Ltd.

Registro:

Documento: Artículo
Título:Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V)
Autor:Tufo, A.E.; Larralde, A.L.; Villarroel-Rocha, J.; Sapag, K.; Sileo, E.E.
Filiación:Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín, Buenos Aires, Argentina
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Laboratorio de Sólidos Porosos, INFAP, CONICET-Universidad Nacional de San Luis, Bloque II 2do Piso, Ejército de los Andes 950, San Luis, 5700, Argentina
Palabras clave:Al-akaganeite; Arsenic adsorption; Mesoporous solids; Morphology; Textural characteristics; Engineering; Industrial engineering; Morphology; Adsorption capacities; Adsorption properties; Akaganeite; Arsenic adsorption; Chemical compositions; Mesoporous solid; Synthesis and characterizations; Textural characteristic; Adsorption
Año:2018
Volumen:6
Número:6
Página de inicio:7044
Página de fin:7053
DOI: http://dx.doi.org/10.1016/j.jece.2018.10.009
Título revista:Journal of Environmental Chemical Engineering
Título revista abreviado:J. Environ. Chem. Eng.
ISSN:22133437
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22133437_v6_n6_p7044_Tufo

Referencias:

  • Bundschuh, J., Pérez Carrera, A., Litter, M., (2008) Distribución Del Arsénico en Las Regiones Ibérica e Iberoamericana, , CYTED Impreso en Argentina
  • Garelick, H., Arsenic pollution sources (2009) Reviews of Environmental Contamination, 197, pp. 17-60. , Springer
  • Kabata-Pendias, A., (2010) Trace Elements in Soils and Plants, , CRC Press
  • Matschullat, J., Arsenic in the geosphere - A review (2000) Sci. Total Environ., 249 (1-3), pp. 297-312
  • Smedley, P.L., Kinniburgh, D., A review of the source, behaviour and distribution of arsenic in natural waters (2002) Appl. Geochem., 17 (5), pp. 517-568
  • Bauer, M., Blodau, C., Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments (2006) Sci. Total Environ., 354 (2-3), pp. 179-190
  • Dixit, S., Hering, J.G., Comparison of arsenic (v) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility (2003) Environ. Sci. Technol., 37 (18), pp. 4182-4189
  • Adra, A., Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage (2016) Appl. Geochem., 64, pp. 2-9
  • Bhowmick, S., Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences (2013) J. Hazard. Mater., 262, pp. 915-923
  • Gorny, J., Arsenic behavior in river sediments under redox gradient: A review (2015) Sci. Total Environ., 505, pp. 423-434
  • Islam, F.S., Role of metal-reducing bacteria in arsenic release from Bengal delta sediments (2004) Nature, 430 (6995), p. 68
  • Leiva, E.D., Natural attenuation process via microbial oxidation of arsenic in a high andean watershed (2014) Sci. Total Environ., 466, pp. 490-502
  • Park, J.H., Han, Y.-S., Ahn, J.S., Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream (2016) Water Res., 106, pp. 295-303
  • Singh, R., Arsenic contamination, consequences and remediation techniques: A review (2015) Ecotoxicol. Environ. Saf., 112, pp. 247-270
  • Cai, Y., Assessment of arsenic mobility in the soils of some golf courses in South Florida (2002) Sci. Total Environ., 291 (1-3), pp. 123-134
  • Kersten, M., Surface complexation modeling of arsenate adsorption by akagenéite (β-FeOOH)-dominant granular ferric hydroxide (2014) Colloids Surf. A: Physicochem. Eng. Aspects, 448, pp. 73-80
  • Kyzas, G.Z., Peleka, E.N., Deliyanni, E.A., Nanocrystalline akaganeite as adsorbent for surfactant removal from aqueous solutions (2013) Materials, 6 (1), pp. 184-197
  • Baig, S.A., Arsenic removal from natural water using low cost granulated adsorbents: A review (2015) CLEAN-Soil, Air, Water, 43 (1), pp. 13-26
  • Jadhav, S.V., Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal (2015) J. Environ. Manage., 162, pp. 306-325
  • Kumar, P.S., Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides (2016) J. Hazard. Mater., 302, pp. 166-174
  • Lata, S., Samadder, S., Removal of arsenic from water using nano adsorbents and challenges: A review (2016) J. Environ. Manage., 166, pp. 387-406
  • Mohan, D., Pittman, C.U., Jr, arsenic removal from water/wastewater using adsorbents - A critical review (2007) J. Hazard. Mater., 142 (1-2), pp. 1-53
  • Roberts, L.C., Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations (2004) Environ. Sci. Technol., 38 (1), pp. 307-315
  • Saha, B., Bains, R., Greenwood, F., Physicochemical characterization of granular ferric hydroxide (GFH) for arsenic (V) sorption from water (2005) Sep. Sci. Technol., 40 (14), pp. 2909-2932
  • Hering, J.G., (2017) Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice, , American Society of Civil Engineers
  • Masue, Y., Loeppert, R.H., Kramer, T.A., Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: Iron hydroxides (2007) Environ. Sci. Technol., 41 (3), pp. 837-842
  • Alvarez, M., Chemical, structural and hyperfine characterization of goethites with simultaneous incorporation of manganese, cobalt and aluminum ions (2015) Chem. Geol., 414, pp. 16-27
  • Freitas, E.T., Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention (2016) Chemosphere, 158, pp. 91-99
  • Penke, Y.K., Aluminum substituted nickel ferrite (Ni-Al-Fe): A ternary metal oxide adsorbent for arsenic adsorption in aqueous medium (2016) RSC Adv., 6 (60), pp. 55608-55617
  • Penke, Y.K., Aluminum substituted cobalt ferrite (co- al- Fe) nano adsorbent for arsenic adsorption in aqueous systems and detailed redox behavior study with XPS (2017) ACS Appl. Mater. Interfaces, 9 (13), pp. 11587-11598
  • Qiao, J., Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr) oxides (2014) Front. Environ. Sci. Eng., 8 (2), pp. 169-179
  • Silva, J., The role of Al-goethites on arsenate mobility (2010) Water Res., 44 (19), pp. 5684-5692
  • Tufo, A.E., Dos Santos Afonso, M., Sileo, E.E., Arsenic adsorption onto aluminium-substituted goethite (2016) Environ. Chem., 13 (5), pp. 838-848
  • Zhang, G., Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: An X-ray absorption spectroscopy investigation (2014) Environ. Sci. Technol., 48 (17), pp. 10316-10322
  • Larralde, A.L., (2018) Enhanced As (V) Adsorption Properties in Sn-Substituted Goethites-Changes in Chemical Reactivity and Surface Characteristics
  • Ngomsik, A.-F., Magnetic nano-and microparticles for metal removal and environmental applications: A review (2005) C.R. Chim., 8 (6-7), pp. 963-970
  • Mostafa, M., Hoinkis, J., Nanoparticle adsorbents for arsenic removal from drinking water: A review (2012) Int. J. Environ. Sci. Manage. Engg. Res., 1, pp. 20-31
  • Ståhl, K., On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts (2003) Corros. Sci., 45 (11), pp. 2563-2575
  • Vaniman, D., Mineralogy of a mudstone at Yellowknife Bay, gale crater, mars (2013) Science, p. 1243480
  • Deliyanni, E., Sorption of As (v) ions by akaganeite-type nanocrystals (2003) Chemosphere, 50 (1), pp. 155-163
  • Deliyanni, E., Akaganéite-type β-FeO (OH) nanocrystals: Preparation and characterization (2001) Microporous Mesoporous Mater., 42 (1), pp. 49-57
  • Ciminelli, V., New insights in the mechanisms of arsenic association with iron oxides in the environment (2016) Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), June 19-23, 2016, Stockholm, Sweden
  • Cho, K., Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal (2014) RSC Adv., 4 (42), pp. 21777-21781
  • Zhang, Y.-X., Jia, Y., A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As (v) ions (2014) Appl. Surf. Sci., 290, pp. 102-106
  • Solozhenkin, P., Removal of As (V) ions from solution by akaganeite bgr-FeO (OH) nanocrystals (2003) J. Min. Sci., 39 (3), pp. 287-296
  • García, K., Characterization of akaganeite synthesized in presence of Al3+, Cr3+, and Cu2+ ions and urea (2008) Mater. Chem. Phys., 112 (1), pp. 120-126
  • Schwertmann, U., Carlson, L., Aluminum influence on iron oxides: XVII. Unit-cell parameters and aluminum substitution of natural goethite (1994) Soil Sci. Soc. Am. J., 58 (1), pp. 256-261
  • Schwertmann, U., Cornell, R.M., (1991) Iron Oxides in the Laboratory, , VCH
  • Abràmoff, M.D., Magalhães, P.J., Ram, S.J., Image processing with ImageJ (2004) Biophotonics Int., 11 (7), pp. 36-42
  • Larson, A., Von Dreele, R., (1986) Gsas: General Structure Analysis System Report LAUR 86-748, , Los Alamos National Laboratory Los Alamos, NM
  • Toby, B.H., EXPGUI, a graphical user interface for GSAS (2001) J. Appl. Crystallogr., 34 (2), pp. 210-213
  • Post, J.E., Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite (2003) Am. Mineral., 88 (5-6), pp. 782-788
  • Post, J.E., Buchwald, V.F., Crystal structure refinement of akaganeite (1991) Am. Mineral., 76 (1-2), pp. 272-277
  • Thompson, P., Cox, D., Hastings, J., Rietveld refinement of Debye-Scherrer synchrotron Xray data from Al2O3 (1987) J. Appl. Crystallogr., 20 (2), pp. 79-83
  • Brunauer, S., Emmett, P.H., Teller, E., Adsorption of gases in multimolecular layers (1938) J. Am. Chem. Soc., 60 (2), pp. 309-319
  • Sing, K., Empirical method for analysis of adsorption isotherms (1968) Chem. Ind.-Engl., 44, pp. 1520-1521. , 2 NOV. 1968
  • Rouquerol, J., (2013) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, , Academic press
  • Rocha, J.V., Barrera, D., Sapag, K., Improvement in the pore size distribution for ordered mesoporous materials with cylindrical and spherical pores using the Kelvin equation (2011) Top. Catal., 54 (1-4), pp. 121-134
  • Villarroel-Rocha, J., Barrera, D., Sapag, K., Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination (2014) Microporous Mesoporous Mater., 200, pp. 68-78
  • Tufo, A.E., Structural and hyperfine properties of Mn and Co-incorporated akaganeites (2014) Hyperfine Interact., 224 (1-3), pp. 239-250
  • Cornell, R.M., Schwertmann, U., (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, , John Wiley & Sons
  • Larralde, A., Structural properties and hyperfine characterization of Sn-substituted goethites (2012) Mater. Chem. Phys., 133 (2-3), pp. 735-740
  • Tufo, A.E., Sileo, E.E., Morando, P.J., Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition (2012) Appl. Clay Sci., 58, pp. 88-95
  • Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984) (1985) Pure Appl. Chem., 57 (4), pp. 603-619
  • Groen, J.C., Pérez-Ramírez, J., Critical appraisal of mesopore characterization by adsorption analysis (2004) Appl. Catal. A, 268 (1-2), pp. 121-125
  • Lafferty, B.J., Loeppert, R., Methyl arsenic adsorption and desorption behavior on iron oxides (2005) Environ. Sci. Technol., 39 (7), pp. 2120-2127
  • Fang, F., Facile one-pot preparation of goethite/parabutlerite nanocomposites and their removal properties and mechanism toward As (V) ions (2015) Appl. Surf. Sci., 324, pp. 355-362
  • Sun, X., Characterization and adsorption performance of Zrdoped akaganéite for efficient arsenic removal (2013) J. Chem. Technol. Biotechnol., 88 (4), pp. 629-635
  • Guo, X., Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study (2007) J. Colloid Interface Sci., 314 (2), pp. 427-433
  • Kolbe, F., Sorption of aqueous antimony and arsenic species onto akaganeite (2011) J. Colloid Interface Sci., 357 (2), pp. 460-465
  • Trang, N.T.T., Fabrication and characterization of akaganeite/graphene oxide nanocomposite for arsenic removal from water (2018) AIP Conference Proceedings, , AIP Publishing
  • Chen, M.-L., Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level (2015) Chemosphere, 130, pp. 52-58

Citas:

---------- APA ----------
Tufo, A.E., Larralde, A.L., Villarroel-Rocha, J., Sapag, K. & Sileo, E.E. (2018) . Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V). Journal of Environmental Chemical Engineering, 6(6), 7044-7053.
http://dx.doi.org/10.1016/j.jece.2018.10.009
---------- CHICAGO ----------
Tufo, A.E., Larralde, A.L., Villarroel-Rocha, J., Sapag, K., Sileo, E.E. "Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V)" . Journal of Environmental Chemical Engineering 6, no. 6 (2018) : 7044-7053.
http://dx.doi.org/10.1016/j.jece.2018.10.009
---------- MLA ----------
Tufo, A.E., Larralde, A.L., Villarroel-Rocha, J., Sapag, K., Sileo, E.E. "Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V)" . Journal of Environmental Chemical Engineering, vol. 6, no. 6, 2018, pp. 7044-7053.
http://dx.doi.org/10.1016/j.jece.2018.10.009
---------- VANCOUVER ----------
Tufo, A.E., Larralde, A.L., Villarroel-Rocha, J., Sapag, K., Sileo, E.E. Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V). J. Environ. Chem. Eng. 2018;6(6):7044-7053.
http://dx.doi.org/10.1016/j.jece.2018.10.009