Artículo

Corbat, A.A.; Schuermann, K.C.; Liguzinski, P.; Radon, Y.; Bastiaens, P.I.H.; Verveer, P.J.; Grecco, H.E. "Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy" (2018) Redox Biology. 19:210-217
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation. © 2018

Registro:

Documento: Artículo
Título:Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
Autor:Corbat, A.A.; Schuermann, K.C.; Liguzinski, P.; Radon, Y.; Bastiaens, P.I.H.; Verveer, P.J.; Grecco, H.E.
Filiación:Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
Palabras clave:Anisotropy FRET biosensor; Apoptotic network; Caspase activity; Co-monitoring; Imaging; Polarization microscopy; caspase 3; caspase 8; caspase 9; effector caspase; anisotropy; anisotropy forster resonant energy transfer based biosensor; apoptosis; Article; controlled study; correlation analysis; enzyme activation; enzyme activity; fluorescence anisotropy microscopy; human; human cell; microscopy; molecular model; priority journal; simulation; apoptosis; fluorescence microscopy; fluorescence polarization; fluorescence resonance energy transfer; genetic procedures; HeLa cell line; metabolism; procedures; signal transduction; Apoptosis; Biosensing Techniques; Caspases, Effector; Enzyme Activation; Fluorescence Polarization; Fluorescence Resonance Energy Transfer; HeLa Cells; Humans; Microscopy, Fluorescence; Signal Transduction
Año:2018
Volumen:19
Página de inicio:210
Página de fin:217
DOI: http://dx.doi.org/10.1016/j.redox.2018.07.023
Título revista:Redox Biology
Título revista abreviado:Redox Biol.
ISSN:22132317
CAS:caspase 3, 169592-56-7; caspase 8; caspase 9, 180189-96-2; Caspases, Effector
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22132317_v19_n_p210_Corbat

Referencias:

  • Ai, H., Hazelwood, K.L., Davidson, M.W., Campbell, R.E., Fluorescent protein fret pairs for ratiometric imaging of dual biosensors (2008) Nat. Methods, 5 (5), pp. 401-403
  • Albeck, J.G., Burke, J.M., Aldridge, B.B., Zhang, M., Lauffenburger, D.A., Sorger, P.K., Quantitative analysis of pathways controlling extrinsic apoptosis in single cells (2008) Mol. Cell, 30 (1), pp. 11-25
  • Albeck, J.G., Burke, J.M., Spencer, S.L., Lauffenburger, D.A., Sorger, P.K., Modeling a snap-action, variable-delay switch controlling extrinsic cell death (2008) PLOS Biol., 6 (12). , (1–1)
  • Aldridge, B.B., Gaudet, S., Lauffenburger, D.A., Sorger, P.K., Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis (2014) Mol. Syst. Biol., 7 (1). , (553–553)
  • Bader, A.N., Hofman, E.G., Voortman, J., van Bergen en Henegouwen, P.M., Gerritsen, H.C., Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution (2009) Biophys. J., 97 (9), pp. 2613-2622
  • Bastiaens, P., van Hoek, A., Benen, J., Brochon, J., Visser, A., Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study (1992) Biophys. J., 63 (3), pp. 839-853
  • Bozza, W.P., Di, X., Takeda, K., Rosado, L.A.R., Pariser, S., Zhang, B., The use of a stably expressed FRET biosensor for determining the potency of cancer drugs (2014) PLoS ONE, 9 (9), p. e107010
  • Carlson, H.J., Campbell, R.E., Genetically encoded fret-based biosensors for multiparameter fluorescence imaging (2009) Curr. Opin. Biotechnol., 20 (1), pp. 19-27. , (Analytical biotechnology)
  • Ding, Y., Ai, H.-W., Hoi, H., Campbell, R.E., Förster resonance energy transfer-based biosensors for multiparameter ratiometric imaging of ca2. dynamics and caspase-3 activity in single cells (2011) Anal. Chem., 83 (24), pp. 9687-9693
  • DiPilato, L.M., Cheng, X., Zhang, J., Fluorescent indicators of camp and epac activation reveal differential dynamics of camp signaling within discrete subcellular compartments (2004) Proc. Natl. Acad. Sci. USA, 101 (47), pp. 16513-16518
  • Dolde, C., Bischof, J., Grüter, S., Montada, A., Halekotte, J., Peifer, C., Kalbacher, H., Suter, B., A ck1 fret biosensor reveals that ddx3x is an essential activator of ck1ϵ (2018) J. Cell Sci., 131, p. 1
  • Frommer, W.B., Davidson, M.W., Campbell, R.E., Genetically encoded biosensors based on engineered fluorescent proteins (2009) Chem. Soc. Rev., 38 (10), pp. 2833-2841
  • Grecco, H.E., Imtiaz, S., Zamir, E., Multiplexed imaging of intracellular protein networks (2016) Cytom. Part A, 89 (8), pp. 761-775
  • Jares-Erijman, E.A., Jovin, T.M., FRET imaging (2003) Nat. Biotechnol., 21 (11), pp. 1387-1395
  • Kimura, H., Hayashi-Takanaka, Y., Yamagata, K., Visualization of dna methylation and histone modifications in living cells (2010) Curr. Opin. Cell Biol., 22 (3), pp. 412-418. , (Nucleus and gene expression)
  • Kominami, K., Nagai, T., Sawasaki, T., Tsujimura, Y., Yashima, K., Sunaga, Y., Tsuchimochi, M., Sakamaki, K., In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis (2012) PLoS ONE, 7 (11), p. e50218
  • Lakowicz, J.R., Principles of Fluorescence Spectroscopy (2006), third ed; Laviv, T., Kim, B.B., Chu, J., Lam, A.J., Lin, M.Z., Yasuda, R., Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins (2016) Nat. Methods, 13 (12), pp. 989-992
  • Lin, C.-W., Jao, C.Y., Ting, A.Y., Genetically encoded fluorescent reporters of histone methylation in living cells (2004) J. Am. Chem. Soc., 126 (19), pp. 5982-5983
  • Luo, K.Q., Yu, V.C., Pu, Y., Chang, D.C., Measuring dynamics of caspase-8 activation in a single living hela cell during tnfα-induced apoptosis (2003) Biochem. Biophys. Res. Commun., 304 (2), pp. 217-222
  • Ma, T., Hou, Y., Zeng, J., Liu, C., Zhang, P., Jing, L., Shangguan, D., Gao, M., Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo (2017) J. Am. Chem. Soc., 140 (1), pp. 211-218
  • Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., Abell, A., Danuser, G., Coordination of rho gtpase activities during cell protrusion (2009) Nature, 461 (7260), pp. 99-103
  • Miranda, J.G., Weaver, A.L., Qin, Y., Park, J.G., Stoddard, C.I., Lin, M.Z., Palmer, A.E., New alternately colored fret sensors for simultaneous monitoring of zn2. in multiple cellular locations (2012) PLoS ONE, 7 (11), pp. 1-10
  • Niino, Y., Hotta, K., Oka, K., Simultaneous live cell imaging using dual fret sensors with a single excitation light (2009) PLoS ONE, 4 (6), pp. 1-9
  • Offterdinger, M., Georget, V., Girod, A., Bastiaens, P.I.H., Imaging phosphorylation dynamics of the epidermal growth factor receptor (2004) J. Biol. Chem., 279 (35), pp. 36972-36981
  • Piljic, A., Schultz, C., Simultaneous recording of multiple cellular events by fret (2008) ACS Chem. Biol., 3 (3), pp. 156-160. , (PMID: 18355004)
  • Prasasya, R.D., Tian, D., Kreeger, P.K., Analysis of cancer signaling networks by systems biology to develop therapies (2011) Semin. Cancer Biol., 21 (3), pp. 200-206. , (Why Systems Biology and Cancer?)
  • Rizzo, M.A., Piston, D.W., High-contrast imaging of fluorescent protein {FRET} by fluorescence polarization microscopy (2005) Biophys. J., 88 (2), pp. L14-L16
  • Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., Choi, A.M.K., Mechanisms of cell death in oxidative stress (2007) Antioxid. Redox Signal., 9 (1), pp. 49-89
  • Schultz, C., Schleifenbaum, A., Goedhart, J., Gadella, T.W.J., Multiparameter imaging for the analysis of intracellular signaling (2005) ChemBioChem, 6 (8), pp. 1323-1330
  • Silberberg, M., Grecco, H.E., pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments (2017) Methods Appl. Fluoresc., 5 (2), p. 024016
  • Squire, A., Verveer, P.J., Rocks, O., Bastiaens, P.I., Red-edge anisotropy microscopy enables dynamic imaging of homo-fret between green fluorescent proteins in cells (2004) J. Struct. Biol., 147 (1), pp. 62-69. , (Recent Advances in Light Microscopy)
  • Stegemann, L., Schuermann, K.C., Strassert, C.A., Grecco, H.E., Photofunctional surfaces for quantitative fluorescence microscopy: monitoring the effects of photogenerated reactive oxygen species at single cell level with spatiotemporal resolution (2015) ACS Appl. Mater. Interfaces, 7 (10), pp. 5944-5949. , (PMID: 25705918)
  • Stepanenko, O.V., Shcherbakova, D.M., Kuznetsova, I.M., Turoverov, K.K., Verkhusha, V.V., Modern fluorescent proteins: from chromophore formation to novel intracellular applications (2011) BioTechniques, 51 (5), pp. 313-318
  • Takemoto, K., Nagai, T., Miyawaki, A., Miura, M., Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects (2003) J. Cell Biol., 160 (2), pp. 235-243
  • Tyas, L., Brophy, V.A., Pope, A., Rivett, A.J., Tavaré, J.M., Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer (2000) EMBO Rep., 1 (3), pp. 266-270
  • Vilar, M., Charalampopoulos, I., Kenchappa, R.S., Simi, A., Karaca, E., Reversi, A., Choi, S., Ibáñez, C.F., Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers (2009) Neuron, 62 (1), pp. 72-83
  • Wachsmuth, M., Conrad, C., Bulkescher, J., Koch, B., Mahen, R., Isokane, M., Pepperkok, R., Ellenberg, J., High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells (2015) Nat. Biotechnol., 33 (4), pp. 384-389
  • Warren, S., Margineanu, A., Katan, M., Dunsby, C., French, P., Homo-FRET based biosensors and their application to multiplexed imaging of signalling events in live cells (2015) Int. J. Mol. Sci., 16 (12), pp. 14695-14716
  • Welch, C.M., Elliott, H., Danuser, G., Hahn, K.M., Imaging the coordination of multiple signalling activities in living cells (2011) Nat. Rev. Mol. Cell Biol., 12 (11), pp. 749-756
  • Xu, X., Gérard, A., Huang, B.C., Anderson, D.C., Payan, D., Luo, Y., Detection of programmed cell death using fluorescence energy transfer (1998) Nucleic Acids Res., 26 (8), pp. 2034-2035
  • Zamir, E., Lommerse, P.H.M., Kinkhabwala, A., Grecco, H.E., Bastiaens, P.I.H., Fluorescence fluctuations of quantum-dot sensors capture intracellular protein interaction dynamics (2010) Nat. Methods, 7 (4), pp. 295-298

Citas:

---------- APA ----------
Corbat, A.A., Schuermann, K.C., Liguzinski, P., Radon, Y., Bastiaens, P.I.H., Verveer, P.J. & Grecco, H.E. (2018) . Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy. Redox Biology, 19, 210-217.
http://dx.doi.org/10.1016/j.redox.2018.07.023
---------- CHICAGO ----------
Corbat, A.A., Schuermann, K.C., Liguzinski, P., Radon, Y., Bastiaens, P.I.H., Verveer, P.J., et al. "Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy" . Redox Biology 19 (2018) : 210-217.
http://dx.doi.org/10.1016/j.redox.2018.07.023
---------- MLA ----------
Corbat, A.A., Schuermann, K.C., Liguzinski, P., Radon, Y., Bastiaens, P.I.H., Verveer, P.J., et al. "Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy" . Redox Biology, vol. 19, 2018, pp. 210-217.
http://dx.doi.org/10.1016/j.redox.2018.07.023
---------- VANCOUVER ----------
Corbat, A.A., Schuermann, K.C., Liguzinski, P., Radon, Y., Bastiaens, P.I.H., Verveer, P.J., et al. Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy. Redox Biol. 2018;19:210-217.
http://dx.doi.org/10.1016/j.redox.2018.07.023