Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The complex mixture we studied could be used as a foaming agent under refrigeration or heating conditions because of the presence of one polysaccharide that gels on heating, a hydroxypropylmethylcellulose called E4M, and another that gels on cooling, κ-carrageenan (κC), together with hydrolyzed soy protein. The concentration effect of each biopolymer on its rheological behavior at 70 °C and thermal behavior of the mixture was studied. For this purpose, a Doehlert design and a response surface methodology were used to design the experiment and analyze it respectively. The rheology of mixed systems on heating was mainly determined by E4M because this polysaccharide gels on heating. However, a high protein or κC concentration E4M gelation was prevented. The statistical analysis showed that E4M exhibited the best performance for both the variables studied. © 2013 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology
Autor:Martínez, K.D.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Gelation; Hydrolysates; Polysaccharides; Response surface methodology; Soy protein; Glycine max
Año:2013
Volumen:3
Página de inicio:19
Página de fin:28
DOI: http://dx.doi.org/10.1016/j.fbio.2013.04.008
Título revista:Food Bioscience
Título revista abreviado:Food BioSci.
ISSN:22124292
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22124292_v3_n_p19_Martinez

Referencias:

  • Agboola, S.O., Singh, H., Munro, P.A., Destabilization of oil-in-water emulsions formed using highly hydrolyzed whey proteins (1998) Journal of Agricultural and Food Chemistry, 46 (1), pp. 84-90
  • Baeza, R.I., Carp, D.J., Perez, O., Pilosof, M.A.R., κ-carrageenan-protein interactions: Effect of proteins on polysaccharide gelling and textural properties (2002) Lebensmittel Wissenscha/t und Technologie, 35, pp. 741-747
  • Baeza, R.I., Carrera Sanchez, C., Pilosof, M.A.R., Patino, M.J.R., Interactions of polysaccharides with β-lacto globulin spread monolayers at the air-water interface (2004) Food Hydrocolloids, 18, pp. 959-966
  • Baeza, R.I., Carrera Sanchez, C., Pilosof, M.A.R., Patino, M.J.R., Interactions of polysaccharides with β-lacto globulin adsorbed films at the air-water interface (2005) Food Hydrocolloids, 19, pp. 239-248
  • Baeza, R.I., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, M.A.R., Interactions between β-lactoglobulin and polysaccharides at the air-water interface and the influence on foam properties (2005) Food Colloids: Interactions Microstructure and Processing, pp. 301-316. , In E. Dickinson (Ed.), Cambridge: The Royal Society of Chemistry
  • Bernardi, L.S., Pilosof, M.A.R., Bartholomai, G.B., Enzymatic modification of soy protein concentrates by fungal and bacterial proteases (1991) Journal Ofthe American Oil Chemists' Society, 68, pp. 102-105
  • Bombara, N., Añon, M.C., Pilosof, M.A.R., Functional properties of protease modified wheat flours (1997) Lebensmittel Wissenscha/t und Techno Logie, 30, pp. 441-447
  • Box, G., Drapper, N., (1987) Empirical Model-building and Response Surfaces, , New York: Wiley
  • Carp, D.J., Wagner, G.B., Bartholomai, G.B., Pilosof, M.A.R., Rheological method for kinetics of drainage and disproportionation of soy proteins foams (1997) Journal of Food Science, 62, pp. 1105-1109
  • Carp, D.J., Bartholomai, G.B., Relkin, P., Pilosof, M.A.R., Effects of denaturation on soy protein-xanthan interactions: Comparison of a whipping-rheological and bubbling method (2001) Colloids and Surfaces B: Biointer/aces, 21, pp. 163-171
  • Chobert, J.M., Sitohy, M.Z., Whitaker, J.R., Solubility and emulsifying properties of caseins modified enzymatically by Staphylococcus aureus (1988) Protease, 36, pp. 220-224
  • Church, F.C., Swaisgood, H.E., Porter, D.H., Catignani, G.L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins (1983) Journal Dairy Science, 66, pp. 1219-1227
  • Collar, C., Andreu, P., Martinez, J.C., Armero, E., Optimization of hydrocolloid addition to improve wheat bread dough functionality: A response surface methodology study (1999) Food Hydrocolloids, 13, pp. 467-475
  • Dickinson, E., Hydrocolloids at interfaces and the influence on the properties of dispersed systems (2003) Food Hydrocolloids, 17, pp. 25-40
  • Doehlert, D.H., Uniform shell design (1970) Applied Statistics, 19, p. 231
  • Ipsen, R., Otte, J., Sharma, R., Nielsen, A., Gram Hansen, L., Qvist, K., Effect of limited hydrolysis on the interfacial rheology and foaming properties of p-lactoglobulin A (2001) Colloids and Surfaces B: Biointerfaces, 21, pp. 173-178
  • Kampf, N., Nussinovitch, A., Rheological characterization of K-carrageenan soy milk gels (1997) Food Hydrocolloids, 11, pp. 261-269
  • Kato, T., Yokoyama, M., Takahashi, A., Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels (1978) Colloid and Polymer Science, 266, pp. 15-21
  • Kim, S.H., Kinsella, J.E., Surface active properties of food proteins: Effects of reduction of disulfide bonds on a film properties and foam stability of glycinin (1987) Journal of Food Science, 52, pp. 128-131
  • Kim, S.H., Kinsella, J.E., Surface active properties of proteins: Effects of progressive succinylation on film properties and foam stability of glycinin (1987) Journal of Food Science, 52, pp. 1341-1343
  • Kinsella, J.E., Functional properties of soy proteins (1979) Journal of the American Oil Chemists' Society, 56, pp. 242-258
  • Kobayashi, K., Huang, C., Lodge, T.P., Thermorreversible gelation of aqueous methylcellulose solutions (1999) Macromolecules, 32, pp. 7070-7077
  • Kobylasnki, J.R., Perez, O.E., Pilosof, M.A.R., Thermal transitions of gluten-free doughs as affected by water, egg white and hydroxypropylmethylcellulose (2004) Thermochimica Act A, 411, pp. 81-89
  • Liu, M., Lee, D.-S., Damodaran, S., Emulsifying properties of acidic subunits of soy 11S globulin (1999) Journal of Agricultural and Food Chemistry, 47, pp. 4970-4975
  • Lundin, L., Hermansson, A.-M., Multivariate analysis of the influences of locust beam gum, ois-casein, K-casein on viscoelastic properties of Na-K-carrageenan gels (1998) Food Hydrocolloids, 12, pp. 175-187
  • Martinez, K.D., Carrera Sanchez, C., Pizones Ruiz-Henestrosa, V., Rodriguez Patino, J.M., Pilosof, M.A.R., Effect of limited hydrolysis of soy protein on the interactions with polysaccharides at the air-water interface (2007) Food Hydrocolloids, 21, pp. 813-822
  • Martínez, K.D., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, M.A.R., Interfacial and foaming properties of soy protein and their hydrolysates (2009) Food Hydrocolloids, 23 (8), pp. 2149-2157
  • Martínez, K.D., Pilosof, M.A.R., Relative viscoelasticity of soy protein hydrolysate and polysaccharides mixtures at cooling conditions analyzed by response surface methodology (2012) Food Hydrocolloids, 26, pp. 318-322
  • Mleko, S., Li-Chan, C.E.Y., Pikus, S., Interactions of κ-carrageenan with whey proteins in gels formed at different pH (1997) Food Research International, 30, pp. 427-433
  • Neiser, S., Draget, K., Smidsrod, O., Gel formation in heat-treated bovine serum albumin-κ-carrageenan systems (2000) Food Hydrocolloids, 14, pp. 95-110
  • Ould Eleya, M.M., Turgeon, S.L., Rheology of κ- Carrageenan and β-lactoglobulin mixed gels (2000) Food Hydrocolloids, 14, pp. 29-40
  • Pérez, O., Wargon, V., Pilosof, A.M., Gelation and structural characteristics of incompatible whey proteins/hydroxypropylmethylcellulose mixtures (2006) Food Hydrocolloids, 20 (2006), pp. 966-974
  • Schorsch, C., Jones, M., Norton, I., Phase behaviour of pure micellar casein/κ-carrageenan systems in milk salt ultrafiltrate (2000) Food Hydrocolloids, 14, pp. 347-358
  • Tolstoguzov, V.B., Protein-polysaccharide interactions (1997) Food Proteins and Their Applications, pp. 171-198. , In S. Damodaran, & A. Paraf (Eds.), New York: Marcel Dekker, Inc
  • Toufeili, S., Dagher, S., Shadarevian, A., Noureddine, M., Sarakbi, M., Farran, T., (1994) Cereal Chemistry, 71, pp. 594-601
  • Tziboula, A., Home, D.S., Influence of milk proteins on the gel transition temperature and mechanical properties of weak κ-carrageenan gels (1998) Gums and Stabilisers for the Food Industry, 9, pp. 202-211. , In P. A. Williams, & G. O. Phillips (Eds.), UK: The Royal society of Chemistry
  • Tziboula, A., Home, D.S., Influence of whey protein denaturation on k-carrageenan gelation (1999) Colloids and Surfaces B: Biointerfaces, 12 (3-6), pp. 299-308
  • Vioque, J., Sanchez-Vioque, R., Clemente, A., Pedroche, J., Millan, F., Partially hydrolyzed rapessed protein isolates with improved functional properties (2000) Journal of the American Oil's Chemist Society, 77, pp. 1-4
  • Wagner, J.R., Gueguen, J., Surface functional properties of native, acid-treated, and reduced soy glycinin. 1. Foaming properties (1999) Journal of Agricultural and Food Chemistry, 47, pp. 2173-2187
  • Ye, A., Hemar, Y., Singh, H., Enhancement of coalescence by xanthan addition to oil-in-water emulsions formed with extensively hydrolysed whey proteins (2004) Food Hydrocolloids, 18 (5), pp. 737-746
  • Yu, M., Damodaran, S., Kinetics of destabilization of soy protein foams (1991) Journal of Agricultural and Food Chemistry, 39, pp. 1563-1567
  • Zhang, G.Y., Foegeding, E.A., Heat-induced phase behavior of β-lactoglobulin/polysaccharide mixtures (2003) Food Hydrocolloids, 17, pp. 785-792
  • Zhang, G.Y., Foegeding, E.A., Hardin, C.C., Effect of sulfated polysaccharides on heat-induced structural changes in β-lactoglobulin (2004) Journal of Agricultural and Food Chemistry, 52, pp. 3975-3981
  • Zylberman, V., Pilosof, M.A.R., Relationship between the glass transition, molecular structure and functional stability of hydrolyzed soy proteins (2002) Amorphous Food and Pharmaceutical Systems, pp. 158-168. , In H. Levine (Ed.), Royal Society of Chemistry

Citas:

---------- APA ----------
Martínez, K.D. & Pilosof, A.M.R. (2013) . Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology. Food Bioscience, 3, 19-28.
http://dx.doi.org/10.1016/j.fbio.2013.04.008
---------- CHICAGO ----------
Martínez, K.D., Pilosof, A.M.R. "Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology" . Food Bioscience 3 (2013) : 19-28.
http://dx.doi.org/10.1016/j.fbio.2013.04.008
---------- MLA ----------
Martínez, K.D., Pilosof, A.M.R. "Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology" . Food Bioscience, vol. 3, 2013, pp. 19-28.
http://dx.doi.org/10.1016/j.fbio.2013.04.008
---------- VANCOUVER ----------
Martínez, K.D., Pilosof, A.M.R. Rheology and thermal transitions of enzymatically modified soy protein and polysaccharides mixtures, of potential use as foaming agent determined by response surface methodology. Food BioSci. 2013;3:19-28.
http://dx.doi.org/10.1016/j.fbio.2013.04.008