Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The genus Golenkinia has not been studied for the production of metabolites of commercial interest. In this work, the accumulation and composition of oils and carotenoids was studied in a new isolated strain of the green alga Golenkinia sp. under salinity stress. Both the molecular and morphological characterization of the strain allowed us to identify it tentatively as G. brevispicula. As part of our morphological descriptions, we show previously unreported cellular stages. One of the most remarkable findings relates to the unprecedented observation of a reddish aplanospore stage in a Golenkinia strain resistant to desiccation. Salinity stress induced an increase in total lipids, reaching 37.2% of DW, and an increase in total carotenoids at the end of stress phase. According to the high lipid values with an equilibrated proportion of polyunsaturated fatty acids and the content of carotenoids dissolved in oil droplets, the lipids of this strain could have a potential application in the nutraceutical and aquaculture feed fields. Further studies are being conducted to optimize the growth and stress conditions in order to enhance biomass, oil and carotenoid productivity. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity
Autor:Rearte, T.A.; Vélez, C.G.; Beligni, M.V.; Figueroa, F.L.; Gómez, P.I.; Flaig, D.; de Iorio, A.F.
Filiación:Cátedra de Química Inorgánica y Analítica, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Av. San Martín 4453, Buenos Aires, 1417, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Micología y Botánica, UBA-CONICET, CABA, Piso 4, Pabellón II, Lab 68, Av. Int. Güiraldes 2620, Buenos Aires, C1428EHA, Argentina
Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, E-29071, Spain
Grupo de Investigación Microalgal FICOLAB, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Palabras clave:Aplanospore; Carotenoids; Golenkinia; Lipids; Salt stress
Año:2018
Volumen:33
Página de inicio:218
Página de fin:230
DOI: http://dx.doi.org/10.1016/j.algal.2018.05.014
Título revista:Algal Research
Título revista abreviado:Algal Res.
ISSN:22119264
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22119264_v33_n_p218_Rearte

Referencias:

  • Del Campo, J.A., García-González, M., Guerrero, M.G., Outdoor cultivation of microalgae for carotenoid production: current state and perspectives (2007) Appl. Microbiol. Biotechnol., 74, pp. 1163-1174
  • Harari, A., Abecassis, R., Relevi, N., Levi, Z., Ben-Amotz, A., Kamari, Y., Harats, D., Shaish, A., Prevention of atherosclerosis progression by 9-cis-beta-carotene rich alga dunaliella in apoE-deficient mice (2013) Biomed. Res. Int., 2013, pp. 1-7
  • Régnier, P., Bastias, J., Rodriguez-Ruiz, V., Caballero-Casero, N., Caballo, C., Sicilia, D., Fuentes, A., Pavon-Djavid, G., Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity (2015) Mar. Drugs., 13, pp. 2857-2874
  • Relevy, N.Z., Harats, D., Harari, A., Ben-Amotz, A., Bitzur, R., Rühl, R., Shaish, A., Vitamin A-deficient diet accelerated atherogenesis in apolipoprotein E −/− mice and dietary β -carotene prevents this consequence (2015) Biomed. Res. Int., 2015, pp. 1-9
  • Yuan, J.P., Peng, J., Yin, K., Wang, J.H., Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae (2011) Mol. Nutr. Food Res., 55, pp. 150-165
  • Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., Chen, X., Progress of microalgae biofuel's commercialization (2017) Renew. Sust. Energ. Rev., 74, pp. 402-411
  • Neofotis, P., Huang, A., Sury, K., Chang, W., Joseph, F., Gabr, A., Twary, S., Polle, J.E.W., Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation (2016) Algal Res., 15, pp. 164-178
  • Wijffels, R.H., Barbosa, M.J., An outlook on microalgal biofuels (2010) Science, 80 (329), pp. 796-799
  • Georgianna, D.R., Mayfield, S.P., Exploiting diversity and synthetic biology for the production of algal biofuels (2012) Nature, 488, pp. 329-335
  • Ghosh, A., Khanra, S., Mondal, M., Halder, G., Tiwari, O.N., Saini, S., Bhowmick, T.K., Gayen, K., Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: a review (2016) Energy Convers. Manag., 113, pp. 104-118
  • Přibyl, P., Cepák, V., Kaštánek, P., Zachleder, V., Elevated production of carotenoids by a new isolate of Scenedesmus sp (2015) Algal Res., 11, pp. 22-27
  • Larkum, A.W.D., Ross, I.L., Kruse, O., Hankamer, B., Selection, breeding and engineering of microalgae for bioenergy and biofuel production (2012) Trends Biotechnol., 30, pp. 198-205
  • Komárek, J., Fott, B., Chlorophyceae (Griinalgen), Ordnung Chlorococcales. (Huber-Pestalozzi, G. Das Phyto- plankton des Siisswassers. 7. Teil, 1. Halfte). - In: Die Bin- nengewasser (1983), XVI; Chodat, M.R., Golenkinia, Genre Nouveau De Protococcoidées (1894) Aust. J. Bot., 18, pp. 305-309
  • Lemieux, C., Vincent, A.T., Labarre, A., Otis, C., Turmel, M., Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) (2015) BMC Evol. Biol., 15
  • Ellis, R.J., Machlis, L., Control of sexuality in Golenkinia (1968) Am. J. Bot., 55, pp. 600-610
  • Hegewald, E., Schnepf, E., Zur Struktur und Taxonomie bestachelte Chlorellales (1984) Nova Hedwigia, 39, pp. 297-383
  • Pröschold, T., Bock, C., Luo, W., Krienitz, L., Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta) (2010) Phycol. Res., 58, pp. 1-8
  • Wolf, M., Hegewald, E., Hepperle, D., Krienitz, L., Von Algenkulturen, S., Göttingen, U., Karspüle, U., Göttingen, D., Phylogenetic Position of the Golenkiniaceae (Chlorophyta) as Inferred from 18S rDNA Sequence Data * (2003), pp. 433-436; Caisová, L., Marin, B., Sausen, N., Pröschold, T., Melkonian, M., Polyphyly of Chaetophora and Stigeoclonium within the Chaetophorales (Chlorophyceae), revealed by sequence comparisons of nuclear-encoded SSU rRNA genes (2011) J. Phycol., 47, pp. 164-177
  • Němcová, Y., Eliáš, M., Škaloud, P., Hodač, L., Neustupa, J., Jenufa gen. nov.: a new genus of coccoid green algae (chlorophyceae, incertae sedis) previously recorded by environmental sequencing (2011) J. Phycol., 47, pp. 928-938
  • Hodač, L., Hallmann, C., Rosenkranz, H., Faßhauer, F., Friedl, T., Molecular evidence for the wide distribution of two lineages of terrestrial green algae (Chlorophyta) over tropics to temperate zone (2012) ISRN Ecol., 2012, pp. 1-9
  • Nakada, T., Misawa, K., Nozaki, H., Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses (2008) Mol. Phylogenet. Evol., 48, pp. 281-291
  • Ellis, R.J., Effects of acetate on the growth and chlorophyll content of Golenkinia (1970) J. Phycol., 6, pp. 364-368
  • Moestrup, Ø., Observations on the fine structure of spermatozoids and vegetative cells of the green alga Golenkinia (1972) Br. Phycol. J., 7, pp. 169-183
  • Ellis, R., Spooner, T., Yakulis, R., Regulation of chlorophyll synthesis in the green alga Golenkinia (1975) Plant Physiol., 55, pp. 791-795
  • Ellis, R.J., Heterotrophic nutrition and its effects on chlorophyll synthesis in Golenkinia (Chlorophyceae) (1977) J. Phycol., 13, pp. 304-306
  • Rahimian, H., Rayburn, W.R., The effect of calcium on growth and seta formation in Golenkinia minutissima (1979) Bot. Gaz., 140, pp. 5-10
  • Ellis, R.J., Timson, C., The absence of protochlorophyll(ide) accumulation in algae with inhibited chlorophyll synthesis (1980) Plant Physiol., 65, pp. 469-471
  • Ellis, R.J., Machlis, L., Nutrition of the green alga Golenkinia (1968) Am. J. Bot., 55, pp. 590-599
  • Usmani, M.A., Suseela, M.R., Toppo, K., Sheikh, S., Nayaka, S., Biomass nutrient profile of the green alga Golenkinia radiata Chodat (2015) Int. J. Recent Adv. Multidiscip. Res., 2, pp. 755-761
  • Medlin, L., Elwood, H.J., Stickel, S., Sogin, M.L., The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions (1988) Gene, 71, pp. 491-499
  • Baldwin, B.G., Sanderson, M.J., Porter, J.M., Martin, F., Campbell, C.S., Donoghue, M.J., Its, T.H.E., Donoghue, P.M.J., The its region of nuclear ribosomal DNA : a valuable source of evidence on angiosperm phylogeny (1995) Ann. Missouri Bot. Gard., 82, pp. 247-277
  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools (2013) Nucleic Acids Res., 41, pp. 590-596
  • Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res., 30, pp. 3059-3066
  • Criscuolo, A., Gribaldo, S., BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments (2010) BMC Evol. Biol., 10, p. 210
  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Huelsenbeck, J.P., Mrbayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space (2012) Syst. Biol., 61, pp. 539-542
  • Huson, D.H., Scornavacca, C., Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks (2012) Syst. Biol., 61, pp. 1061-1067
  • Letunic, I., Bork, P., Interactive tree of life v2: online annotation and display of phylogenetic trees made easy (2011) Nucleic Acids Res., 39, pp. 475-478
  • Gómez-Serrano, C., Morales-Amaral, M.M., Acién, F.G., Escudero, R., Fernández-Sevilla, J.M., Molina-Grima, E., Utilization of secondary-treated wastewater for the production of freshwater microalgae (2015) Appl. Microbiol. Biotechnol., 99, pp. 6931-6944
  • Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipids from animal tissues (1957) J. Biol. Chem., 226, pp. 497-509
  • Marsh, J.B., Weinstein, D.B., Simple charring method for determination of lipids (1966) J. Lipid Res., 7, pp. 574-576
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Anal. Chem., 28, pp. 350-356
  • Lowry, O.H., Rosebrough, N.J., Farr, L., Randall, R.J., Protein measurement with the folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Wellburn, A.R., The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution (1994) J. Plant Physiol., 144, pp. 307-313
  • Keller, A., Schleicher, T., Förster, F., Ruderisch, B., Dandekar, T., Müller, T., Wolf, M., ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales) (2008) BMC Evol. Biol., 8, p. 218
  • Lemieux, C., Otis, C., Turmel, M., Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae (2014) BMC Evol. Biol., 14, pp. 1-15
  • Ewing, A., Brubaker, S., Somanchi, A., Yu, E., Rudenko, G., Reyes, N., Espina, K., Franklin, S., 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes (2014) J. Phycol., 50, pp. 765-769
  • Hagen, C., Siegmund, S., Braune, W., Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation (2002) Eur. J. Phycol., 37, pp. 217-226
  • Rabbani, S., Beyer, P., Lintig, J.V., Hugueney, P., Kleinig, H., Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil (1998) Plant Physiol., 116, pp. 1239-1248
  • Johnson, X., Alric, J., Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch (2013) Eukaryot. Cell, 12, pp. 776-793
  • Vitova, M., Bisova, K., Kawano, S., Zachleder, V., Accumulation of energy reserves in algae: from cell cycles to biotechnological applications (2015) Biotechnol. Adv., 33, pp. 1204-1218
  • Masojídek, J., Torzillo, G., Kopecký, J., Koblížek, M., Nidiaci, L., Komenda, J., Lukavská, A., Sacchi, A., Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress (2000) J. Appl. Phycol., 12, pp. 417-426
  • Holzinger, A., Karsten, U., Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms (2013) Front. Plant Sci., 4
  • Lee, K.W., Ultrastructure of Characiochloris acuminata Lee et Bold (1974) Br. Phycol. J., 9, pp. 393-397
  • Hoffman, L.R., Observations on the fine structure of Oedogonium IV. The mature pyrenoid of Oe. cardiacum (1968) Trans. Am. Microsc. Soc., 87, pp. 178-185
  • Retallack, B., Butler, R.D., The development and structure of pyrenoids in Bulbochaete hiloensis (1970) J. Cell Sci., 6, pp. 229-241
  • Arora, M., Anil, A.C., Leliaert, F., Delany, J., Mesbahi, E., Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India (2013) Eur. J. Phycol., 48, pp. 61-78
  • Wang, S.-T., Pan, Y.-Y., Liu, C.-C., Chuang, L.-T., Chen, C.-N.N., Characterization of a green microalga UTEX 2219-4: effects of photosynthesis and osmotic stress on oil body formation (2011) Bot. Stud., 52, pp. 305-312
  • Pal, D., Khozin-Goldberg, I., Cohen, Z., Boussiba, S., The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp (2011) Appl. Microbiol. Biotechnol., 90, pp. 1429-1441
  • Hu, C.W., Te Chuang, L., Yu, P.C., Chen, C.N.N., Pigment production by a new thermotolerant microalga Coelastrella sp. F50 (2013) Food Chem., 138, pp. 2071-2078
  • Campenni, L., Nobre, B.P., Santos, C.A., Oliveira, A.C., Aires-Barros, M.R., Palavra, A.M.F., Gouveia, L., Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions (2013) Appl. Microbiol. Biotechnol., 97, pp. 1383-1393
  • Abedi, E., Sahari, M.A., Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties (2014) Food Sci. Nutr., 2, pp. 443-463
  • Brenna, J.T., Salem, N., Sinclair, A.J., Cunnane, S.C., α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans (2009) Prostaglandins Leukot. Essent. Fat. Acids, 80, pp. 85-91
  • Simopoulos, A.P., Dinicolantonio, J.J., The importance of a balanced ω-6 to ω-3 ratio in the prevention and management of obesity (2016) Open Hear., 3, pp. 1-6
  • Simopoulos, A.P., Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases (2006) Biomed Pharmacother, 60, pp. 502-507
  • Simopoulos, A.P., Omega-3 fatty acids in inflammation and autoimmune diseases (2002) J. Am. Coll. Nutr., 21, pp. 495-505
  • Steinrücken, P., Erga, S.R., Mjøs, S.A., Kleivdal, H., Prestegard, S.K., Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies (2017) Algal Res., 26, pp. 392-401
  • Harker, M., Tsavalos, A.J., Young, A.J., Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis (1996) Bioresour. Technol., 55, pp. 207-214
  • Ben-Amotz, A., Avron, M., On the factors which determine massive beta-carotene accumulation in the halotolerant alga Dunaliella bardawil (1983) Plant Physiol., 72, pp. 593-597
  • Li, Y., Huang, J., Sandmann, G., Chen, F., High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae) (2009) J. Phycol., 45, pp. 635-641
  • Aburai, N., Sumida, D., Abe, K., Effect of light level and salinity on the composition and accumulation of free and ester-type carotenoids in the aerial microalga Scenedesmus sp. (Chlorophyceae) (2015) Algal Res., 8, pp. 30-36
  • Pelah, D., Sintov, A., Cohen, E., The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity (2004) World J. Microbiol. Biotechnol., 20, pp. 483-486
  • Hanagata, N., Dubinsky, Z., Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta) (1999) J. Phycol., 35, pp. 960-966
  • Aburai, N., Ohkubo, S., Miyashita, H., Abe, K., Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan (2013) Algal Res., 2, pp. 237-243
  • Mellado-Ortega, E., Hornero-Méndez, D., Isolation and identification of lutein esters, including their regioisomers, in Tritordeum (×Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity (2012) Food Chem., 135, pp. 1344-1352
  • Lin, J.H., Lee, D.J., Chang, J.S., Lutein in specific marigold flowers and microalgae (2015) J. Taiwan Inst. Chem. Eng., 49, pp. 90-94
  • Lin, J.H., Lee, D.J., Chang, J.S., Lutein production from biomass: Marigold flowers versus microalgae (2015) Bioresour. Technol., 184, pp. 421-428
  • Takaichi, S., Carotenoids in algae: distributions, biosyntheses and functions of carotenoids in algae (2011) Mar. Drugs, 9, pp. 1101-1118
  • Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., Chen, F., Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential (2014) Mar. Drugs, 12, pp. 3487-3515
  • Olaizola, M., Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors (2000) J. Appl. Phycol., 12, pp. 499-506
  • Hosseini Tafreshi, A., Shariati, M., Dunaliella biotechnology: methods and applications (2009) J. Appl. Microbiol., 107, pp. 14-35
  • Sun, H., Liu, B., Lu, X., Cheng, K.W., Chen, F., Staged cultivation enhances biomass accumulation in the green growth phase of Haematococcus pluvialis (2017) Bioresour. Technol., 233, pp. 326-331
  • Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G., Cerón, M.C., Pérez-Parra, J., Molina-Grima, E., Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature (2008) Appl. Microbiol. Biotechnol., 79, pp. 719-729
  • Del Campo, J.A., Moreno, J., Rodríguez, H., Angeles Vargas, M., Rivas, J., Guerrero, M.G., Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta) (2000) J. Biotechnol., 76, pp. 51-59
  • Minhas, A.K., Hodgson, P., Barrow, C.J., Sashidhar, B., Adholeya, A., The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential (2016) Bioresour. Technol., 211, pp. 556-565
  • Gómez, P.I., Haro, P., Lagos, P., Palacios, Y., Torres, J., Sáez, K., Castro, P., González, M.A., Intraspecific variability among Chilean strains of the astaxanthin-producing microalga Haematococcus pluvialis (Chlorophyta): an opportunity for its genetic improvement by simple selection (2016) J. Appl. Phycol., 28, pp. 2115-2122

Citas:

---------- APA ----------
Rearte, T.A., Vélez, C.G., Beligni, M.V., Figueroa, F.L., Gómez, P.I., Flaig, D. & de Iorio, A.F. (2018) . Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity. Algal Research, 33, 218-230.
http://dx.doi.org/10.1016/j.algal.2018.05.014
---------- CHICAGO ----------
Rearte, T.A., Vélez, C.G., Beligni, M.V., Figueroa, F.L., Gómez, P.I., Flaig, D., et al. "Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity" . Algal Research 33 (2018) : 218-230.
http://dx.doi.org/10.1016/j.algal.2018.05.014
---------- MLA ----------
Rearte, T.A., Vélez, C.G., Beligni, M.V., Figueroa, F.L., Gómez, P.I., Flaig, D., et al. "Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity" . Algal Research, vol. 33, 2018, pp. 218-230.
http://dx.doi.org/10.1016/j.algal.2018.05.014
---------- VANCOUVER ----------
Rearte, T.A., Vélez, C.G., Beligni, M.V., Figueroa, F.L., Gómez, P.I., Flaig, D., et al. Biological characterization of a strain of Golenkinia (Chlorophyceae) with high oil and carotenoid content induced by increased salinity. Algal Res. 2018;33:218-230.
http://dx.doi.org/10.1016/j.algal.2018.05.014