Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The brain is spontaneously active, even in the absence of sensory stimulation. The functionally mature zebrafish optic tectum shows spontaneous activity patterns reflecting a functional connectivity adapted for the circuit's functional role and predictive of behavior. However, neither the emergence of these patterns during development nor the role of retinal inputs in their maturation has been characterized. Using two-photon calcium imaging, we analyzed spontaneous activity in intact and enucleated zebrafish larvae throughout tectum development. At the onset of retinotectal connections, intact larvae showed major changes in the spatiotemporal structure of spontaneous activity. Although the absence of retinal inputs had a significant impact on the development of the temporal structure, the tectum was still capable of developing a spatial structure associated with the circuit's functional roles and predictive of behavior. We conclude that neither visual experience nor intrinsic retinal activity is essential for the emergence of a spatially structured functional circuit. © 2017 The Author(s)

Registro:

Documento: Artículo
Título:The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs
Autor:Pietri, T.; Romano, S.A.; Pérez-Schuster, V.; Boulanger-Weill, J.; Candat, V.; Sumbre, G.
Filiación:IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, 75005, France
Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, C1425FQD, Argentina
Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular and Departamento de Física, UBA, Buenos Aires, C1428EG, Argentina
Palabras clave:behavior; development of spontaneous activity; neuronal circuit dynamics; optic tectum; retinal input; visual system; zebrafish; animal experiment; animal tissue; Article; brain maturation; controlled study; electroencephalogram; embryo; functional connectivity; hemisphere; hemispheric dominance; locomotion; nonhuman; tectum; topography; visual stimulation; animal; calcium signaling; growth, development and aging; metabolism; photostimulation; physiology; retina; superior colliculus; vision; visual system; zebra fish; Animals; Calcium Signaling; Photic Stimulation; Retina; Superior Colliculi; Visual Pathways; Visual Perception; Zebrafish
Año:2017
Volumen:19
Número:5
Página de inicio:939
Página de fin:948
DOI: http://dx.doi.org/10.1016/j.celrep.2017.04.015
Título revista:Cell Reports
Título revista abreviado:Cell Rep.
ISSN:22111247
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22111247_v19_n5_p939_Pietri

Referencias:

  • Ackman, J.B., Crair, M.C., Role of emergent neural activity in visual map development (2014) Curr. Opin. Neurobiol., 24, pp. 166-175
  • Akerman, C.J., Cline, H.T., Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo (2006) J. Neurosci., 26, pp. 5117-5130
  • Burbridge, T.J., Xu, H.-P., Ackman, J.B., Ge, X., Zhang, Y., Ye, M.-J., Zhou, Z.J., Crair, M.C., Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors (2014) Neuron, 84, pp. 1049-1064
  • Burrill, J.D., Easter, S.S., Jr., Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) (1994) J. Comp. Neurol., 346, pp. 583-600
  • Faisal, A.A., Selen, L.P.J., Wolpert, D.M., Noise in the nervous system (2008) Nat. Rev. Neurosci., 9, pp. 292-303
  • Fiser, J., Chiu, C., Weliky, M., Small modulation of ongoing cortical dynamics by sensory input during natural vision (2004) Nature, 431, pp. 573-578
  • Gahtan, E., Tanger, P., Baier, H., Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum (2005) J. Neurosci., 25, pp. 9294-9303
  • Gu, X., Olson, E.C., Spitzer, N.C., Spontaneous neuronal calcium spikes and waves during early differentiation (1994) J. Neurosci., 14, pp. 6325-6335
  • Huberman, A.D., Feller, M.B., Chapman, B., Mechanisms underlying development of visual maps and receptive fields (2008) Annu. Rev. Neurosci., 31, pp. 479-509
  • Jetti, S.K., Vendrell-Llopis, N., Yaksi, E., Spontaneous activity governs olfactory representations in spatially organized habenular microcircuits (2014) Curr. Biol., 24, pp. 434-439
  • Keck, T., Keller, G.B., Jacobsen, R.I., Eysel, U.T., Bonhoeffer, T., Hübener, M., Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo (2013) Neuron, 80, pp. 327-334
  • Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., Arieli, A., Spontaneously emerging cortical representations of visual attributes (2003) Nature, 425, pp. 954-956
  • Kirkby, L.A., Sack, G.S., Firl, A., Feller, M.B., A role for correlated spontaneous activity in the assembly of neural circuits (2013) Neuron, 80, pp. 1129-1144
  • Kita, E.M., Scott, E.K., Goodhill, G.J., Topographic wiring of the retinotectal connection in zebrafish (2015) Dev. Neurobiol., 75, pp. 542-556
  • Krauzlis, R.J., Lovejoy, L.P., Zénon, A., Superior colliculus and visual spatial attention (2013) Annu. Rev. Neurosci., 36, pp. 165-182
  • Nevin, L.M., Robles, E., Baier, H., Scott, E.K., Focusing on optic tectum circuitry through the lens of genetics (2010) BMC Biol., 8, p. 126
  • Niell, C.M., Smith, S.J., Functional imaging reveals rapid development of visual response properties in the zebrafish tectum (2005) Neuron, 45, pp. 941-951
  • Panier, T., Romano, S.A., Olive, R., Pietri, T., Sumbre, G., Candelier, R., Debrégeas, G., Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy (2013) Front. Neural Circuits, 7, p. 65
  • Pologruto, T.A., Sabatini, B.L., Svoboda, K., ScanImage: flexible software for operating laser scanning microscopes (2003) Biomed. Eng. Online, 2, p. 13
  • Pratt, K.G., Dong, W., Aizenman, C.D., Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum (2008) Nat. Neurosci., 11, pp. 467-475
  • Romano, S.A.A., Pietri, T., Pérez-Schuster, V., Jouary, A., Haudrechy, M., Sumbre, G., Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior (2015) Neuron, 85, pp. 1070-1085
  • Sernagor, E., Young, C., Eglen, S.J., Developmental modulation of retinal wave dynamics: shedding light on the GABA saga (2003) J. Neurosci., 23, pp. 7621-7629
  • Sheroziya, M.G., von Bohlen Und Halbach, O., Unsicker, K., Egorov, A.V., Spontaneous bursting activity in the developing entorhinal cortex (2009) J. Neurosci., 29, pp. 12131-12144
  • Sin, W.C., Haas, K., Ruthazer, E.S., Cline, H.T., Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases (2002) Nature, 419, pp. 475-480
  • Smith, M.A., Kohn, A., Spatial and temporal scales of neuronal correlation in primary visual cortex (2008) J. Neurosci., 28, pp. 12591-12603
  • Stuermer, C.A., Retinotopic organization of the developing retinotectal projection in the zebrafish embryo (1988) J. Neurosci., 8, pp. 4513-4530
  • Sumbre, G., Muto, A., Baier, H., Poo, M.M., Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval (2008) Nature, 456, pp. 102-106
  • Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Schreiter, E.R., Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators (2009) Nat. Methods, 6, pp. 875-881
  • Tolhurst, D.J., Movshon, J.A., Dean, A.F., The statistical reliability of signals in single neurons in cat and monkey visual cortex (1983) Vision Res., 23, pp. 775-785
  • Triplett, J.W., Molecular guidance of retinotopic map development in the midbrain (2014) Curr. Opin. Neurobiol., 24, pp. 7-12
  • Vislay-Meltzer, R.L., Kampff, A.R., Engert, F., Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system (2006) Neuron, 50, pp. 101-114
  • Warp, E., Agarwal, G., Wyart, C., Friedmann, D., Oldfield, C.S., Conner, A., Del Bene, F., Isacoff, E.Y., Emergence of patterned activity in the developing zebrafish spinal cord (2012) Curr. Biol., 22, pp. 93-102
  • Weliky, M., Katz, L.C., Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo (1999) Science, 285, pp. 599-604
  • Westerfield, M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (1995), University of Oregon Press; Xu, H., Khakhalin, A.S., Nurmikko, A.V., Aizenman, C.D., Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system (2011) J. Neurosci., 31, pp. 8025-8036
  • Zhou, Q., Tao, H.W., Poo, M.M., Reversal and stabilization of synaptic modifications in a developing visual system (2003) Science, 300, pp. 1953-1957

Citas:

---------- APA ----------
Pietri, T., Romano, S.A., Pérez-Schuster, V., Boulanger-Weill, J., Candat, V. & Sumbre, G. (2017) . The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs. Cell Reports, 19(5), 939-948.
http://dx.doi.org/10.1016/j.celrep.2017.04.015
---------- CHICAGO ----------
Pietri, T., Romano, S.A., Pérez-Schuster, V., Boulanger-Weill, J., Candat, V., Sumbre, G. "The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs" . Cell Reports 19, no. 5 (2017) : 939-948.
http://dx.doi.org/10.1016/j.celrep.2017.04.015
---------- MLA ----------
Pietri, T., Romano, S.A., Pérez-Schuster, V., Boulanger-Weill, J., Candat, V., Sumbre, G. "The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs" . Cell Reports, vol. 19, no. 5, 2017, pp. 939-948.
http://dx.doi.org/10.1016/j.celrep.2017.04.015
---------- VANCOUVER ----------
Pietri, T., Romano, S.A., Pérez-Schuster, V., Boulanger-Weill, J., Candat, V., Sumbre, G. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs. Cell Rep. 2017;19(5):939-948.
http://dx.doi.org/10.1016/j.celrep.2017.04.015