Abstract:
A computational co-simulation framework to study the aeroelastic behavior of a variety of aeronautical systems characterized by highly flexible structures undergoing complex motions in space and immersed in a low-subsonic flow is presented. The authors combine a non-linear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a non-linear structural model based on a segregated formulation of Lagrange’s equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multi-body systems, such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The governing equations are numerically integrated in the time domain to obtain the structural response and the consistent flowfield around it. The integration is based on the fourth-order predictor-corrector method of Hamming. The findings are found to capture known non-linear behavior of these non-conventional flight systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of aeronautical systems such as: micro-air-vehicles (MAVs) inspired by biology, morphing wings, and joined-wing aircrafts, among others. © 2018, Springer International Publishing AG.
Registro:
Documento: |
Artículo
|
Título: | A computational aeroelastic framework for studying non-conventional aeronautical systems |
Autor: | Preidikman, S.; Roccia, B.A.; Verstraete, M.L.; Ceballos, L.R.; Balachandran, B.; Martins D.; Simas H.; Simoni R.; Mendes Carvalho J.C. |
Filiación: | Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina Grupo de Matemática Aplicada, Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina University of Maryland at College Park, College Park, MD, United States
|
Palabras clave: | Aeroelasticity; Aeronautical systems; Co-simulation; Multibody dynamics; Unsteady aerodynamics; Aerodynamics; Automobile bodies; Fighter aircraft; Finite element method; Flexible structures; Micro air vehicle (MAV); Time domain analysis; Aeroelastic behavior; Cosimulation; Joined-wing aircraft; Multi-body dynamic; Nonlinear aerodynamic model; Predictor-corrector methods; Unsteady aerodynamics; Unsteady vortex-lattice methods; Aeroelasticity |
Año: | 2018
|
Volumen: | 54
|
Página de inicio: | 325
|
Página de fin: | 334
|
DOI: |
http://dx.doi.org/10.1007/978-3-319-67567-1_31 |
Título revista: | 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017
|
Título revista abreviado: | Mech. Mach. Sci.
|
ISSN: | 22110984
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22110984_v54_n_p325_Preidikman |
Referencias:
- Lucia, D.J., The sensorcraft configurations: A non-linear aeroservoelastic challenge for aviation (2005) Proceedings of 46Th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2005-1943, Austin, TX, USA, 18–21, April
- Cavallaro, R., Demasi, L., Challenges, ideas, and innovations of joined-wings configurations: A concept from the past, and opportunity for the future (2016) Prog. Aerosp. Sci., 87, pp. 1-93
- Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., Inman, D.J., A review of morphing aircraft (2011) J. Intell. Mater. Syst. Struct., 22, pp. 823-877
- Valasek, J., (2012) Morphing Aerospace Vehicles and Structures, , Wiley, UK
- Lentink, D., Biewener, A.A., Nature-inspired flight – beyond the leap (2010) Bioinspir. Biomim, 5, p. 9
- Taha, H.E., Hajj, M.R., Nayfeh, A.H., Flight dynamics and control of flapping-wing MAVs: A review (2012) J. Nonlinear Dyn., 70 (2), pp. 907-939
- Baldelli, D.H., Chen, P.C., Panza, J., Unified aeroelastic and flight dynamic formulation via rational function approximations (2006) J. Aircr., 43 (3), pp. 763-772
- Varello, A., Carrera, E., Demasi, L., Vortex lattice method coupled with advanced one-dimensional structural models (2011) ASD J., 2 (2), pp. 53-78
- De Souza, C.E., Da Silva, R.G.A., Cesnik, C.E.S., Nonlinear aeroelastic framework based on vortex lattice method and co-rotational shell finite element (2012) 53Rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1976, Honolulu, Hawaii, USA, 23–26, April
- Hallissy, B.P., Cesnik, C.E.S., High-fidelity aeroelastic analysis of very flexible aircraft (2011) 52Nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2011-1914, Denver, Colorado, USA, 4–7, April
- Zhao, Z., Ren, G., Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft (2011) AIAA J, 49 (1), pp. 41-54
- Thwapiah, G., Campanile, L.F., Nonlinear aeroelastic behavior of compliant airfoils (2010) Smart Mater. Struct., 19
- Wang, I., Gibbs, S.C., Dowell, E.H., Aeroelastic model of multi segmented folding wings: Theory and experiment (2012) J. Aircr, 42 (2), pp. 911-921
- Hu, H., Yang, Z., Gu, Y., Aeroelastic study for folding wing during the morphing process (2016) J. Sound Vib., 365, pp. 216-229
- Kim, D.K., Lee, J.S., Lee, J.Y., Han, J.H., An aeroelastic analysis of a flexible flapping wing using modified strip theory (2008) SPIE 15Th Annual Symposium Smart Structures and Materials, 6928
- Nakata, T., Liu, H., A fluid-structure interaction model of insect flight with flexible wings (2012) J. Comput. Phys., 231, pp. 1822-1847
- Chimakurthi, S.K., Stanford, B.K., Cesnik, C.E.S., Shyy, W., Flapping wing CFD/CSD aeroelastic formulation based on a co-rotational shell finite element (2009) 50Th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009-2412, Palm Springs, California, USA, 4–7, May
- Unger, R., Haupt, M.C., Horst, P., Radespiel, R., Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow (2012) J. Fluid Struct., 28, pp. 72-88
- Ghommem, M., Hajj, M.R., Mook, D.T., Stanford, B.K., Beran, P.S., Snyder, R.D., Watson, L.T., Global optimization of actively morphing flapping wings (2012) J. Fluids Struct., 33, pp. 210-228
- Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T., A modified unsteady vortex-lattice method to study the aerodynamics of flapping wings in hover flight (2013) AIAA J, 51 (11), pp. 2628-2642
- Wie, S.Y., Lee, S., Lee, D.J., Potential panel and time-marching free-wake coupling analysis for helicopter rotor (2009) J. Aircr., 46 (3), pp. 1030-1041
- Verstraete, M.L., Preidikman, S., Roccia, B.A., Mook, D.T., A numerical model to study the nonlinear and unsteady aerodynamics of bioinspired morphing-wing concepts (2015) Int. J. Micro Air Vehicles, 7 (3), pp. 327-345
- Preidikman, S., Mook, D.T., Time-Domain simulations of linear and non–linear aeroelastic behavior (2000) J. Vib. Control, 6 (8), pp. 1135-1176
- Preidikman, S., (1998) Numerical Simulations of Interactions among Aerodynamics, Structural Dynamics, and Control Systems, , Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg
- Kalmar-Nagy, T., Stanciulescu, I., Can complex systems really be simulated? (2014) Appl. Math. Comput., 227, pp. 199-211
- Roccia, B.A., Preidikman, S., Balachandran, B., Computational dynamics of flapping wings in hover flight: A co-simulation strategy (2017) AIAA J., , in press
- Shabana, A.A., (2010) Dynamics of Multibody Systems, 3Rd Edn, , Cambridge University Press, Cambridge
- Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., (2001) Concepts and Applications of Finite Element Analysis, 4Th Edn, , Wiley, New York
- Beckert, A., Wendland, H., Multivariate interpolation for fluid-structure-interaction problems using radial basis functions (2001) Aerosp. Sci. Technol., 5, pp. 125-134
- Roccia, B.A., Preidikman, S., Verstraete, M.L., Mook, D.T., Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings (2016) J. Aerosp. Eng. (ASCE), 30 (1), pp. 1-17. , Paper 04016079
- Fry, S.N., Sayaman, R., Dickinson, M.H., The aerodynamics of hovering flight in drosophila (2005) J. Exp. Biol., 208, pp. 2303-2318
Citas:
---------- APA ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., Simas H.,..., Mendes Carvalho J.C.
(2018)
. A computational aeroelastic framework for studying non-conventional aeronautical systems. 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017, 54, 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31---------- CHICAGO ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al.
"A computational aeroelastic framework for studying non-conventional aeronautical systems"
. 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017 54
(2018) : 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31---------- MLA ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al.
"A computational aeroelastic framework for studying non-conventional aeronautical systems"
. 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017, vol. 54, 2018, pp. 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31---------- VANCOUVER ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al. A computational aeroelastic framework for studying non-conventional aeronautical systems. Mech. Mach. Sci. 2018;54:325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31