Artículo

Preidikman, S.; Roccia, B.A.; Verstraete, M.L.; Ceballos, L.R.; Balachandran, B.; Martins D.; Simas H.; Simoni R.; Mendes Carvalho J.C. "A computational aeroelastic framework for studying non-conventional aeronautical systems" (2018) 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017. 54:325-334
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A computational co-simulation framework to study the aeroelastic behavior of a variety of aeronautical systems characterized by highly flexible structures undergoing complex motions in space and immersed in a low-subsonic flow is presented. The authors combine a non-linear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a non-linear structural model based on a segregated formulation of Lagrange’s equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multi-body systems, such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The governing equations are numerically integrated in the time domain to obtain the structural response and the consistent flowfield around it. The integration is based on the fourth-order predictor-corrector method of Hamming. The findings are found to capture known non-linear behavior of these non-conventional flight systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of aeronautical systems such as: micro-air-vehicles (MAVs) inspired by biology, morphing wings, and joined-wing aircrafts, among others. © 2018, Springer International Publishing AG.

Registro:

Documento: Artículo
Título:A computational aeroelastic framework for studying non-conventional aeronautical systems
Autor:Preidikman, S.; Roccia, B.A.; Verstraete, M.L.; Ceballos, L.R.; Balachandran, B.; Martins D.; Simas H.; Simoni R.; Mendes Carvalho J.C.
Filiación:Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, ‎Buenos Aires, Argentina
Grupo de Matemática Aplicada, Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
University of Maryland at College Park, College Park, MD, United States
Palabras clave:Aeroelasticity; Aeronautical systems; Co-simulation; Multibody dynamics; Unsteady aerodynamics; Aerodynamics; Automobile bodies; Fighter aircraft; Finite element method; Flexible structures; Micro air vehicle (MAV); Time domain analysis; Aeroelastic behavior; Cosimulation; Joined-wing aircraft; Multi-body dynamic; Nonlinear aerodynamic model; Predictor-corrector methods; Unsteady aerodynamics; Unsteady vortex-lattice methods; Aeroelasticity
Año:2018
Volumen:54
Página de inicio:325
Página de fin:334
DOI: http://dx.doi.org/10.1007/978-3-319-67567-1_31
Título revista:6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017
Título revista abreviado:Mech. Mach. Sci.
ISSN:22110984
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22110984_v54_n_p325_Preidikman

Referencias:

  • Lucia, D.J., The sensorcraft configurations: A non-linear aeroservoelastic challenge for aviation (2005) Proceedings of 46Th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2005-1943, Austin, TX, USA, 18–21, April
  • Cavallaro, R., Demasi, L., Challenges, ideas, and innovations of joined-wings configurations: A concept from the past, and opportunity for the future (2016) Prog. Aerosp. Sci., 87, pp. 1-93
  • Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., Inman, D.J., A review of morphing aircraft (2011) J. Intell. Mater. Syst. Struct., 22, pp. 823-877
  • Valasek, J., (2012) Morphing Aerospace Vehicles and Structures, , Wiley, UK
  • Lentink, D., Biewener, A.A., Nature-inspired flight – beyond the leap (2010) Bioinspir. Biomim, 5, p. 9
  • Taha, H.E., Hajj, M.R., Nayfeh, A.H., Flight dynamics and control of flapping-wing MAVs: A review (2012) J. Nonlinear Dyn., 70 (2), pp. 907-939
  • Baldelli, D.H., Chen, P.C., Panza, J., Unified aeroelastic and flight dynamic formulation via rational function approximations (2006) J. Aircr., 43 (3), pp. 763-772
  • Varello, A., Carrera, E., Demasi, L., Vortex lattice method coupled with advanced one-dimensional structural models (2011) ASD J., 2 (2), pp. 53-78
  • De Souza, C.E., Da Silva, R.G.A., Cesnik, C.E.S., Nonlinear aeroelastic framework based on vortex lattice method and co-rotational shell finite element (2012) 53Rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1976, Honolulu, Hawaii, USA, 23–26, April
  • Hallissy, B.P., Cesnik, C.E.S., High-fidelity aeroelastic analysis of very flexible aircraft (2011) 52Nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2011-1914, Denver, Colorado, USA, 4–7, April
  • Zhao, Z., Ren, G., Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft (2011) AIAA J, 49 (1), pp. 41-54
  • Thwapiah, G., Campanile, L.F., Nonlinear aeroelastic behavior of compliant airfoils (2010) Smart Mater. Struct., 19
  • Wang, I., Gibbs, S.C., Dowell, E.H., Aeroelastic model of multi segmented folding wings: Theory and experiment (2012) J. Aircr, 42 (2), pp. 911-921
  • Hu, H., Yang, Z., Gu, Y., Aeroelastic study for folding wing during the morphing process (2016) J. Sound Vib., 365, pp. 216-229
  • Kim, D.K., Lee, J.S., Lee, J.Y., Han, J.H., An aeroelastic analysis of a flexible flapping wing using modified strip theory (2008) SPIE 15Th Annual Symposium Smart Structures and Materials, 6928
  • Nakata, T., Liu, H., A fluid-structure interaction model of insect flight with flexible wings (2012) J. Comput. Phys., 231, pp. 1822-1847
  • Chimakurthi, S.K., Stanford, B.K., Cesnik, C.E.S., Shyy, W., Flapping wing CFD/CSD aeroelastic formulation based on a co-rotational shell finite element (2009) 50Th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009-2412, Palm Springs, California, USA, 4–7, May
  • Unger, R., Haupt, M.C., Horst, P., Radespiel, R., Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow (2012) J. Fluid Struct., 28, pp. 72-88
  • Ghommem, M., Hajj, M.R., Mook, D.T., Stanford, B.K., Beran, P.S., Snyder, R.D., Watson, L.T., Global optimization of actively morphing flapping wings (2012) J. Fluids Struct., 33, pp. 210-228
  • Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T., A modified unsteady vortex-lattice method to study the aerodynamics of flapping wings in hover flight (2013) AIAA J, 51 (11), pp. 2628-2642
  • Wie, S.Y., Lee, S., Lee, D.J., Potential panel and time-marching free-wake coupling analysis for helicopter rotor (2009) J. Aircr., 46 (3), pp. 1030-1041
  • Verstraete, M.L., Preidikman, S., Roccia, B.A., Mook, D.T., A numerical model to study the nonlinear and unsteady aerodynamics of bioinspired morphing-wing concepts (2015) Int. J. Micro Air Vehicles, 7 (3), pp. 327-345
  • Preidikman, S., Mook, D.T., Time-Domain simulations of linear and non–linear aeroelastic behavior (2000) J. Vib. Control, 6 (8), pp. 1135-1176
  • Preidikman, S., (1998) Numerical Simulations of Interactions among Aerodynamics, Structural Dynamics, and Control Systems, , Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg
  • Kalmar-Nagy, T., Stanciulescu, I., Can complex systems really be simulated? (2014) Appl. Math. Comput., 227, pp. 199-211
  • Roccia, B.A., Preidikman, S., Balachandran, B., Computational dynamics of flapping wings in hover flight: A co-simulation strategy (2017) AIAA J., , in press
  • Shabana, A.A., (2010) Dynamics of Multibody Systems, 3Rd Edn, , Cambridge University Press, Cambridge
  • Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., (2001) Concepts and Applications of Finite Element Analysis, 4Th Edn, , Wiley, New York
  • Beckert, A., Wendland, H., Multivariate interpolation for fluid-structure-interaction problems using radial basis functions (2001) Aerosp. Sci. Technol., 5, pp. 125-134
  • Roccia, B.A., Preidikman, S., Verstraete, M.L., Mook, D.T., Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings (2016) J. Aerosp. Eng. (ASCE), 30 (1), pp. 1-17. , Paper 04016079
  • Fry, S.N., Sayaman, R., Dickinson, M.H., The aerodynamics of hovering flight in drosophila (2005) J. Exp. Biol., 208, pp. 2303-2318

Citas:

---------- APA ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., Simas H.,..., Mendes Carvalho J.C. (2018) . A computational aeroelastic framework for studying non-conventional aeronautical systems. 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017, 54, 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31
---------- CHICAGO ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al. "A computational aeroelastic framework for studying non-conventional aeronautical systems" . 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017 54 (2018) : 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31
---------- MLA ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al. "A computational aeroelastic framework for studying non-conventional aeronautical systems" . 6th International Symposium on Multibody Systems and Mechatronics, MuSMe 2017, vol. 54, 2018, pp. 325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31
---------- VANCOUVER ----------
Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Martins D., et al. A computational aeroelastic framework for studying non-conventional aeronautical systems. Mech. Mach. Sci. 2018;54:325-334.
http://dx.doi.org/10.1007/978-3-319-67567-1_31