Bentz, E.N.; Pomilio, A.B.; Lobayan, R.M."Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin" (2017) Computational and Theoretical Chemistry. 1110:14-24
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Interest in food phenolics has increased in recent years largely due to their antioxidant capacity, free radical scavenging, and potential health benefits. In literature two main reaction mechanisms have been proposed for their role as free radical (FR) scavengers, i.e., the mechanism of a hydrogen atom transfer (HAT) governed by the O[sbnd]H bond dissociation enthalpy (BDE), and the mechanism of single electron transfer (SET) governed by an electron transfer process, the ionization potential (IP) playing an important role. Thirty nonplanar structures were analyzed. The study of (+)-catechin (CTQ) and (4α → 6″, 2α → O → 1″)-phenylflavans with a R′ = H, R = OH; R′ = OH, R = H, and R′ = OH, R = OH substitution is performed herein. Catechol, phenol, and resorcinol are also included as references. Results obtained with B3LYP hybrid functional with 6-311++G(d,p) and 6-31G(d,p) basis set are analyzed. Two new indicators arising from electron delocalizations are presented herein, thus showing that there is a different set of donor-acceptor interactions to explain FR scavenging mechanisms. © 2017 Elsevier B.V.


Documento: Artículo
Título:Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin
Autor:Bentz, E.N.; Pomilio, A.B.; Lobayan, R.M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5300, Corrientes, Argentina
Hospital de Clínicas “José de San Martín”, Departamento de Bioquímica Clínica, UBA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Av. Córdoba 2351 C1120AAF, Buenos Aires, Argentina
Palabras clave:(4α→6″, 2α → O → 1″)-phenylflavans; Antioxidants; Atoms in molecules; Bond dissociation enthalpies; Catechin; Density functional theory; Donor-acceptor interactions; Ionization potentials; Natural bond orbital analysis; Proanthocyanidins
Página de inicio:14
Página de fin:24
Título revista:Computational and Theoretical Chemistry
Título revista abreviado:Comput. Theor. Chem.


  • Zheng, W., Wang, S.Y., Antioxidant activity and phenolic compounds in selected herbs (2001) J. Agric. Food Chem., 49, pp. 5165-5170
  • Pinent, M., Bladé, C., Salvadó, M.J., Blay, M., Pujadas, G., Fernández-Larrea, J., Arola, L., Ardévol, A., Procyanidin effects on adipocyte-related pathologies (2006) Crit. Rev. Food Sci. Nutr., 46, pp. 543-550
  • Cotelle, N., Role of flavonoids in oxidative stress (2001) Curr. Top. Med. Chem., 1, pp. 569-590
  • Havsteen, B.H., The biochemistry and medical significance of the flavonoids (2002) Pharmacol. Ther., 96, pp. 67-202
  • Rice-Evans, C.A., Miller, N.J., Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids (1996) Free Radic. Biol. Med., 20, pp. 933-956
  • Nijveldt, R.J., van Nood, E., van Hoorn, D.E.C., Boelens, P.G., van Norren, K., van Leeuwen, P.A.M., Flavonoids: a review of probable mechanisms of action and potential applications (2001) Am. J. Clin. Nutr., 74, pp. 418-425
  • Miean, K.H., Mohamed, S., Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants (2001) J. Agric. Food Chem., 49, pp. 3106-3112
  • van Acker, S.A.B., de Groot, M.J., van der Berg, D.J., Tromp, M.N., Donne, G., Wim, F.J., van der Vijgh, W.J.F., Bast, A., A quantum chemical explanation of the antioxidant activity of flavonoids (1996) Chem. Res. Toxicol., 9, pp. 1305-1312
  • van Acker, S.A.B., van der Berg, D.J., Tromp, M.N., Griffioen, D.H., van Bennekom, W.P., van der Vijgh, W.J.F., Bast, A., Structural aspects of antioxidant activity of flavonoids (1996) Free Radic. Biol. Med., 20, pp. 331-342
  • Antonczak, S., Electronic description of four flavonoids revisited by DFT method (2008) J. Mol. Struct.-Theochem., 856, pp. 38-45
  • Lameira, J., Alves, C.N., Moliner, V., Silla, E., A density functional study of flavonoid compounds with anti-HIV activity (2006) Eur. J. Med. Chem., 41, pp. 616-623
  • Leopoldini, M., Marino, T., Russo, N., Toscano, M., Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent (2004) Theor. Chem. Acc., 111, pp. 210-216
  • Mendoza-Wilson, A.M., Glossman-Mitnik, D., CHIH-DFT determination of the molecular structure; infrared and ultraviolet spectra of the flavonoid quercetin (2004) J. Mol. Struc.-Theochem., 681, pp. 71-76
  • Olejniczak, S., Potrzebowski, M.J., Solid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin (2004) Org. Biomol. Chem., 2, pp. 2315-2322
  • Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., Russo, N., Food antioxidants: chemical insights at the molecular level (2016) Annu. Rev. Food Sci. Technol., 7, pp. 335-352
  • Leopoldini, M., Russo, N., Toscano, M., A comparative study of the antioxidant power of flavonoid catechin and its planar analogue (2007) J. Agric. Food Chem., 55, pp. 7944-7949
  • Zhang, D., Chu, L., Liu, Y., Wang, A., Ji, B., Wu, W., Zhou, F., Jia, G., Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory (2011) J. Agric. Food Chem., 59, pp. 10277-10285
  • Leopoldini, M., Russo, N., Toscano, M., The molecular basis of working mechanism of natural polyphenolic antioxidants (2001) Food Chem., 125, pp. 288-306
  • Mendoza-Wilson, A.M., Ávila-Quezada, G.D., Balandrán-Quintana, R.R., Glossman-Mitnik, D., Computational study of the molecular structure and reactive sites of the R and S isomers of persin diene (2008) J. Mol. Struct. THEOCHEM, 869, pp. 67-74
  • Mendoza-Wilson, A.M., Ávila-Quezada, G.D., Balandrán-Quintana, R.R., Glossman-Mitnik, D., Ruiz-Cruz, S., Characterization of the semiquinones and quinones of (-)-epicatechin by means of computational chemistry (2009) J. Mol. Struct. THEOCHEM, 897, pp. 6-11
  • Leopoldini, M., Prieto Pitarch, I., Russo, N., Toscano, M., Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study (2004) J. Phys. Chem. A, 108, pp. 92-96
  • Leopoldini, M., Rondinelli, F., Russo, N., Toscano, M., Pyranoanthocyanins: a theoretical investigation on their antioxidant activity (2010) J. Agric. Food Chem., 58, pp. 8862-8871
  • Zhang, H.-Y., Wang, L.-F., Sun, Y.-M., Why B-ring is the active center for genistein to scavenge peroxyl radical: a DFT study (2003) Bioorg. Med. Chem. Lett., 13, pp. 909-911
  • Zhang, J., Du, F., Peng, B., Lu, R., Gao, H., Zhou, Z., Structure, electronic properties, and radical scavenging mechanisms of daidzein, genistein, formononetin, and biochanin A: a density functional study (2010) J. Mol. Struct. THEOCHEM, 955, pp. 1-6
  • Prior, R.L., Wu, X., Schaich, K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements (2005) J. Agric. Food Chem., 53, pp. 4290-4302
  • Marković, Z.S., Dimitrić Marković, J.M., Milenković, D., Filipović, N., Mechanistic study of the structure-activity relationship for the free radical scavenging activity of baicalein (2011) J. Mol. Model., 17, pp. 2575-2584
  • Trouillas, P., Marsal, P., Siri, D., Lazzaroni, R., Duroux, J.-L., A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site (2006) Food Chem., 97, pp. 679-688
  • Sadasivam, K., Kumaresan, R., Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds – a DFT study (2011) Comput. Theor. Chem., 963, pp. 227-235
  • Senthilkumar, K., Kumaresan, R., A DFT study on the structural, electronic properties and radical scavenging mechanisms of calycosin, glycitein, pratensein and prunetin (2012) Comput. Theor. Chem., 985, pp. 14-22
  • Wright, J.S., Johnson, E.R., DiLabio, G.A., Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants (2001) J. Am. Chem. Soc., 123, pp. 1173-1183
  • Zhang, H.-Y., Structure-activity relationships and rational design strategies for radical-scavenging antioxidants (2005) Curr. Comput. Aided-Drug Des., 1, pp. 257-273
  • Mohajeri, A., Asemani, S.S., Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant (2009) J. Mol. Struct., 930, pp. 15-20
  • Alcaro, S., Chiodo, S.G., Leopoldini, M., Ortuso, F., Antioxidant efficiency of oxovitisin, a new class of red wine pyranoanthocyanins, revealed through quantum mechanical investigations (2013) J. Chem. Inf. Model., 53, pp. 66-75
  • Nenadis, N., Sigalas, M.P., A DFT study on the radical scavenging activity of maritimetin and related aurones (2008) J. Phys. Chem. A, 112, pp. 12196-12202
  • Vitale, A.A., Bernatene, E.A., Vitale, M.G., Pomilio, A.B., New insights of the Fenton reaction using glycerol as experimental model. Effect of O2, inhibition by Mg2+, and oxidation state of Fe (2016) J. Phys. Chem. A, 120, pp. 5435-5445
  • Wright, J.S., Searching for the fountain of youth: a progress report (2003) Chem. Br., 39, pp. 25-27
  • Galano, A., Alvarez-Idaboy, J.R., A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity (2013) J. Comput. Chem., 34, pp. 2430-2445
  • Lobayan, R.M., Bentz, E.N., Jubert, A.H., Pomilio, A.B., Theoretical study of Z isomers of A-type dimeric proanthocyanidins substituted with R = H, OH and OCH3: stability and reactivity properties (2010) J. Mol. Model., 16, pp. 1895-1909
  • Bentz, E.N., Pomilio, A.B., Lobayan, R.M., Z-Isomers of (4α→6″,2α→O→1″)-phenylflavan substituted with R′ = R = OH. Conformational properties, electronic structure and aqueous solvent effects (2016) J. Mol. Model., 22, p. 187
  • Mendoza-Wilson, A.M., Lardizabal-Gutiérrez, D., Torres-Moye, E., Fuentes-Cobas, L., Balandrán-Quintana, R.R., Camacho-Dávila, A., Quintero-Ramos, A., Glossman-Mitnik, D., Optimized structure and thermochemical properties of flavonoids determined by the CHIH (medium)–DFT model chemistry versus experimental techniques (2007) J. Mol. Struct., 871, pp. 114-130
  • Denisov, E.T., Denisova, T.G., Handbook of Antioxidants. Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reaction (2000), second ed. CRC Press USA; Lide, D.R., Handbook of Chemistry and Physics (2003), 84th ed. CRC Press; Lobayan, R.M., Bentz, E.N., Jubert, A.H., Pomilio, A.B., Structural and electronic properties of Z isomers of (4α → 6″, 2α → O → 1″)-phenylflavans substituted with R = H, OH and OCH3 calculated in aqueous solution with PCM solvation model (2012) J. Mol. Model., 18, pp. 1667-1676
  • Bentz, E.N., Pomilio, A.B., Lobayan, R.M., Structure and electronic properties of (+)-catechin: aqueous solvent effects (2014) J. Mol. Model., 20, p. 2105
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Pople, J.A., (2003), Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA; Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B, 37, pp. 785-789
  • DiLabio, G.A., Using locally dense basis sets for the determination of molecular properties (1999) J. Phys. Chem. A, 103, pp. 11414-11424
  • Biegler-könig, F.W., Bader, R.F.W., Tang, T.H., Calculation of the average properties of atoms in molecules. II (1982) J. Comput. Chem., 3, pp. 317-328
  • Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F., NBO 3.1. Program as implemented in the Gaussian 03 package; Himo, F., Eriksson, L.A., Blomberg, M.R.A., Siegbahn, P.E.M., Substituent effects on OH bond strength and hyperfine properties of phenol, as model for modified tyrosyl radicals in proteins (2000) Int. J. Quant. Chem., 76, pp. 714-723
  • Zhang, H.Y., Sun, Y.M., Wang, X.L., Substituent effects on O–H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure–activity relationships for flavonoid antioxidants (2003) Chem. Eur. J., 9, pp. 502-508
  • de Heer, M.I., Korth, H.-G., Mulder, P., Poly methoxy phenols in solution: O–H bond dissociation enthalpies, structures, and hydrogen bonding (1999) J. Org. Chem., 64, pp. 6969-6975
  • Thavasi, V., Leong, L.P., Bettens, R.P.A., Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols (2006) J. Phys. Chem. A, 110, pp. 4918-4923
  • Klein, E., Lukeš, V., DFT/B3LYP study of O–H bond dissociation enthalpies of para- and meta-substituted phenols: correlation with the phenolic C[sbnd]O bond length (2006) J. Mol. Struct. THEOCHEM, 767, pp. 43-50


---------- APA ----------
Bentz, E.N., Pomilio, A.B. & Lobayan, R.M. (2017) . Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin. Computational and Theoretical Chemistry, 1110, 14-24.
---------- CHICAGO ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. "Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin" . Computational and Theoretical Chemistry 1110 (2017) : 14-24.
---------- MLA ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. "Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin" . Computational and Theoretical Chemistry, vol. 1110, 2017, pp. 14-24.
---------- VANCOUVER ----------
Bentz, E.N., Pomilio, A.B., Lobayan, R.M. Donor-acceptor interactions as descriptors of the free radical scavenging ability of flavans and catechin. Comput. Theor. Chem. 2017;1110:14-24.