Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Identifying high-quality habitats across large areas is a central goal in biodiversity conservation. Remotely sensed data provide the opportunity to study different habitat characteristics (e.g., landscape topography, soil, vegetation cover, climatic factors) that are difficult to identify at high spatial and temporal resolution on the basis of field studies. Our goal was to evaluate the applicability of remotely sensed information as a potential tool for modeling habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling species that lives in a desert ecosystem. We fitted models considering raw indices (i.e., green indices, Brightness Index (BI) and temperature) and their derived texture measures on locations used by and available for the viscacha rat. The habitat preferences identified in our models are consistent with results of field studies of landscape use by the viscacha rat. Rocky habitats were well differentiated by the second-order contrast of BI, instead of BI only, making an important contribution to the global model by capturing the heterogeneity of the substratum. Furthermore, rocky habitats are able to maintain more vegetation than much of the surrounding desert; hence, their availability might be estimated using SATVI (Soil Adjusted Total Vegetation Index) and its derived texture measures: second-order contrast and entropy. This is the first study that evaluates the usefulness of remotely sensed data for predicting and mapping habitat suitability for a small-bodied rock dwelling species in a desert environment. Our results may contribute to conservation efforts focused on these habitat specialist species by using good predictors of habitat quality. © 2015, Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.


Documento: Artículo
Título:Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment
Autor:Campos, V.E.; Gatica, G.; Bellis, L.M.
Filiación:Interacciones Biológicas del Desierto (INTERBIODES), IMCN - Universidad Nacional de San Juan, Av. Ignacio de la Roza 590 (Oeste), 5400, Rivadavia, San Juan, Argentina
Departamento de Biología y Museo de Ciencias Naturales, Facultad Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Instituto de Diversidad y Ecología Animal (IDEA) CONICET/UNC and Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Palabras clave:Desert ecosystem; Habitat selection; Image texture; Rocky habitat; Soil Adjusted Total Vegetation Index; Viscacha rat; Mammalia; Octomys mimax
Página de inicio:117
Página de fin:126
Título revista:Mammal Research
Título revista abreviado:Mammal Res.


  • Austin, M.P., Nicholls, A.O., Doherty, M.D., Meyers, J.A., Determining species response functions to an environmental gradient by means of a beta-function (1994) J Veg Sci, 5, pp. 215-228
  • Baraldi, A., Parmiggiani, F., An investigation of textural characteristics associated with gray level co-occurrence matrix statistical parameters (1995) IEEE Trans Geosci Remote Sens, 33, pp. 293-304
  • Bellis, L.M., Pidgeon, A.M., Radeloff, V.C., St-Louis, V., Navarro, J.L., Martella, M.B., Modeling habitat suitability for greater rheas based on satellite image texture (2008) Ecol Appl, 18, pp. 1956-1966. , PID: 19263890
  • Bolstad, P.V., Lillesand, T.M., Improved classification of forest vegetation in northern Wisconsin through a rule-based combination of soils, terrain, and landsat thematic mapper data (1992) For Sci, 38, pp. 5-20
  • Boyce, M.S., Vernier, P.R., Scott, E.N., Schmiegelow, F.K.A., Evaluating resource selection functions (2002) Ecol Model, 157, pp. 281-300
  • Bradley, B.A., Olsson, A.D., Wang, O., Dickson, B.G., Pelech, L., Sesnie, S.E., Zachmann, L.J., Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? (2012) Ecol Model, 244, pp. 57-64
  • Brown, D.G., Predicting vegetation types at treeline using topography and biophysical disturbance variables (1994) J Veg Sci, 5, pp. 642-656
  • Burnham, K.P., Anderson, D.R., (2002) Model selection and multimodel inference. A practical information—theoretic approach, , Springer, New York
  • Campbell, J.B., (2002) Introduction to remote sensing, , The Guilford Press, New York
  • Campos, V.E., Biología de Octomys mimax (Rodentia: Octodontidae): selección de hábitat y conservación en el Monte árido de San Juan (2012) Dissertation, , Universidad Nacional de Córdoba, Argentina
  • Campos, V.E., Giannoni, S.M., Habitat selection by the viscacha rat (Octomys mimax, Rodentia: Octodontidae) in a spatially heterogeneous landscape (2013) Mamm
  • Campos, V.E., Andino, N., Cappa, F., Reus, L., Giannoni, S., Microhabitat selection by Octomys mimax (Rodentia: Octodontidae) in the Monte Desert is affected by attributes and thermal properties of crevices (2013) Rev Chil Hist Nat, 86, pp. 315-324
  • Card, D., Using know map category marginal frequencies to improve estimates of thematic map accuracy (1982) Photogramm Eng Remote Sens, 48, pp. 431-439
  • Crist, C.P., Cicone, R.C., Application of the tasseled cap concept to simulate thematic mapper data (1984) Photogramm Eng, 50, pp. 343-352
  • Devictor, V., Julliard, R., Jiguet, F., Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation (2008) Oikos, 117, pp. 507-514
  • Ebensperger, L.A., Sobrero, R., Campos, V., Giannoni, S.M., Activity, ranges areas, and nesting patterns in the viscacha rat, Octomys mimax: implications for its social organization (2008) J Arid Environ, 72, pp. 1174-1183
  • Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Philli, S.J., Novel methods improve prediction of species’distribution from occurrence data (2006) Ecography, 29, pp. 129-151
  • (2004) Environment for visualizing images. Version 4.1, , Research Systems, Boulder, Colorado
  • Estes, L.D., Okin, G.S., Mwangi, A.G., Shugart, H.H., Habitat selection by a rare forest antelope: a multi-scale approach combining field data and imagery from three sensors (2008) Remote Sens Environ, 112, pp. 2033-2050
  • Fortin, D., Morris, D.W., McLoughlin, P.D., Habitat selection and the evolution of specialist in heterogeneous environments (2008) Israel J Ecol Evol, 54, pp. 311-328
  • Gatica, M.G., Estudio del estado y cambio temporal de la cobertura vegetal usando teledetección, sistemas de información geográfica y técnicas cuantitativas de ecología de paisajes en un sitio del Monte Central, San Juan (Argentina) (2010) Dissertation, , Universidad Nacional de San Juan, Argentina
  • Ge, S., Carruthers, R., Gong, P., Herrera, A., Texture analysis for mapping Tamarix parviflora using aerial photographs along the cache creek, California (2006) Environ Monit Assess, 114, pp. 65-83. , PID: 16572294
  • Goirán, S.B., Aranibar, J.N., Gomez, M.L., Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte Desert (Argentina) (2012) J Arid Environ, 87, pp. 188-197
  • Gottschalk, T.K., Huettmann, F., Ehlers, M., Thirty years of analyzing and modeling avian habitat relationships using satellite imagery data: a review (2005) Int J Remote Sens, 26, pp. 2631-2656
  • Gould, W., Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots (2000) Ecol Appl, 10, pp. 1861-1870
  • Hall-Beyer, M., The GLCM tutorial home page (2007) Current Version, 2, p. 10
  • Haralick, R.M., Shanmugam, K., Dinstein, I., Textural features for image classification (1973) IEEE Trans Syst Man Cybern, SMC-3, pp. 610-621
  • Heiberger, R.M., Holland, B., (2004) Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS, , Springer Texts in Statistics, New York
  • Herfindal, I., Solberg, E.J., Sӕther, B.E., Høgda, K.A., Andersen, R., Environmental phenology and geographical gradients in moose body mass (2006) Oecologia, 150, pp. 213-224. , PID: 16944246
  • Huete, A.R., A soil-adjusted vegetation index (SAVI) (1988) Remote Sens Environ, 25, pp. 295-309
  • Johnson, C.J., Nielsen, S.E., Merrill, E.H., McDonald, T.L., Boyce, M.S., Resource selection functions based on use-availability data: theoretical motivation and evaluation methods (2006) J Wildl Manag, 70, pp. 347-357
  • Kauth, R.J., Thomas, G.S., The tasseled cap- a graphic description of the spectral temporal development of agricultural crops as seen in Landsat (1976) Proc Symp Machine Process Remotely Sensed Data, pp. 41-51
  • Labraga, J.C., Villalba, R., Climate in the Monte desert: past trends, present conditions, and future projections (2009) J Arid Environ, 73, pp. 154-163
  • Labrandero, J.L., Aplicación de métodos digitales al reconocimiento de suelos mediante sensores remotos (1978), Thesis Universidad Autónoma de Madrid, España; Mares, M.A., The geobiological interface: granitic outcrops as a selective force in mammalian evolution (1997) JR Soc West Aust, 80, pp. 131-139
  • Márquez, J., Martínez Carretero, E., Dalmasso, A., Pastrán, G., Ortiz, G., Las áreas protegidas de la provincia de San Juan (Argentina) II. La vegetación del Parque Provincial de Ischigualasto. Multequina (2005) Lat Am J Nat Resour, 14, pp. 1-27
  • Marsett, R.C., Qi, J., Heilman, P., Biedenbender, S.H., Watson, M.C., Amer, S., Weltz, M., Marsett, R., Remote sensing for grassland management in the arid southwest (2006) Rangeland Ecol Manag, 59, pp. 530-540
  • Martinelli, M., Caracterización de la degradación de tierras en sistemas productivos de zonas áridas, en Valle Fértil, Noreste de San Juan, Argentina. Identificación de indicadores (2009) Dissertation, , Universidad Nacional de Río Cuarto, Argentina
  • Mihran, T., Jain, A.K., Texture analysis. In Chen CH, Pau LF, Wang PSP (eds.) The handbook of pattern recognition and computer vision. Word Scientific Publishing Co (1998) pp 207–248
  • Nagendra, H., Using remote sensing to assess biodiversity (2001) Int J Remote Sens, 22, pp. 2377-2400
  • Nutt, K.J., Socioecology of rock-dwelling rodents (2007) Rodent societies: an ecological and evolutionary perspective, pp. 193-402. , Wolf JO, Sherman PW, (eds), Chicago University Press, Chicago and London
  • Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E., Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation (2013) Remote Sens Environ, 129, pp. 122-131
  • Osborne, P.E., Alonso, J.C., Bryant, R.G., Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards (2001) J Appl Ecol, 38, pp. 458-471
  • Pettorelli, N., Olav Vik, J., Mysterud, A., Gaillard, J.M., Tucker, C.J., Stenseth, N.C., Using the satellite-derived NDVI to assess ecological responses to environmental change (2005) Trends Ecol Evol, 20, pp. 503-510. , PID: 16701427
  • Pimm, S.L., Askins, R.A., Forest losses predict bird extinctions in eastern North-America (1995) Proc Natl Acad Sci U S A, 92, pp. 9343-9347. , COI: 1:CAS:528:DyaK2MXosVWltbc%3D, PID: 11607581
  • Pitman, N.C.A., Jorgensen, P.M., Williams, R.S.R., Leon-Yanez, S., Valencia, R., Extinction-rate estimates for a modern neotropical flora (2002) Conserv Biol, 16, pp. 1427-1431
  •, Quantum GIS Version 1.7.0 “Wroclaw” Development Team, 2010. QGIS Geographic Information System. Open Source Geospatial Foundation Project; Core Team, R., A language and environment for statistical computing (2014) R Foundation for Statistical Computing, ,, Vienna: Austria. URL
  • Riaza, A., Escuder, J., Villar, P., Alfageme, S.M., Reflectancia espectral en el visible e infrarrojo cercano (400–2500 nm) de distintas litologías en un conjunto ígneo y metamórfico (Salamanca, España): aplicaciones en cartografía geológica (1994) Rev Soc Geol Esp, 7, pp. 7-20
  • Rogers, D.J., Randolph, S.E., Snow, R.W., Hay, S.I., Satellite imagery in the study and forecast of malaria (2002) Nature, 415, pp. 710-715. , COI: 1:CAS:528:DC%2BD38XhsVCjtLs%3D, PID: 11832960
  • Schott, J.R., Volchok, W.J., Thematic mapper thermal infrared calibration (1985) Photogramm Eng Remote Sens, 51, pp. 1351-1357
  • St-Louis, V., Pidgeon, A.M., Radeloff, V.C., Hawbaker, T.J., Clayton, M.K., Image texture in high-resolution remote sensing images as predictor of bird species richness (2006) Remote Sens Environ, 105, pp. 299-312
  • St-Louis, V., Pidgeon, A.M., Clayton, M.K., Locke, B.A., Bash, D., Radeloff, V.C., Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan desert of New Mexico (2009) Ecography, 32, pp. 468-480
  • Thomas, C.D., Williams, S.E., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Phillips, O.L., Biodiversity conservation – uncertainty in predictions of extinction risk – effects of changes in climate and land use – climate change and extinction risk – reply (2004) Nature, p. 430
  • Traba, J., Acebes, P., Campos, V.E., Giannoni, S.M., Habitat selection by two sympatric rodent species in the Monte desert Argentina. First data for Eligmodontia moreni and Octomys mimax (2010) J Arid Environ, 74, pp. 179-185
  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., Remote sensing for biodiversity science and conservation (2003) Trends Ecol Evol, 18, pp. 306-314
  • Walker, R.S., Novaro, A.J., Branch, L.C., Effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia) (2003) Landsc Ecol, 18, pp. 185-192
  • Willems, E.P., Hill, R.A., A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops) (2009) J Biogeogr, 36, pp. 2300-2312
  • Wood, E.M., Pidgeon, A.M., Radeloff, V.C., Keules, N.S., Image texture as a remotely sensed measure of vegetation structure (2012) Remote Sens Environ, 121, pp. 516-526
  • Wood, E.M., Pidgeon, A.M., Radeloff, V.C., Keuler, N.S., Image texture predicts avian density and species richness (2013) Plos One, p. 8
  • Zar, J.H., Biostatistical analysis (1999), Prentice-Hall, USA; Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., Mixed effects models and extensions in ecology with R (2009), Springer, New York


---------- APA ----------
Campos, V.E., Gatica, G. & Bellis, L.M. (2015) . Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment. Mammal Research, 60(2), 117-126.
---------- CHICAGO ----------
Campos, V.E., Gatica, G., Bellis, L.M. "Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment" . Mammal Research 60, no. 2 (2015) : 117-126.
---------- MLA ----------
Campos, V.E., Gatica, G., Bellis, L.M. "Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment" . Mammal Research, vol. 60, no. 2, 2015, pp. 117-126.
---------- VANCOUVER ----------
Campos, V.E., Gatica, G., Bellis, L.M. Remote sensing variables as predictors of habitat suitability of the viscacha rat (Octomys mimax), a rock-dwelling mammal living in a desert environment. Mammal Res. 2015;60(2):117-126.