Artículo

Sappia, L.D.; Piccinini, E.; Marmisollé, W.; Santilli, N.; Maza, E.; Moya, S.; Battaglini, F.; Madrid, R.E.; Azzaroni, O. "Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions" (2017) Advanced Materials Interfaces. 4(17)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The rapidly emerging field of organic bioelectronics exploits the functional versatility of conducting polymers to transduce biological recognition events into electronic signals. For the majority of biosensors or biomedical devices, immobilization of a biorecognition element is a critical step to improve the biotic/abiotic interface. In this work, a simple strategy is described to construct large-area all-plastic poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes displaying carbohydrate biorecognizable motifs. First, the method involves the preparation of PEDOT-poly(allylamine) composites through supramolecular interactions. It is demonstrated by Raman and X-ray spectroscopy and cyclic voltammetry that the PEDOT:poly(allylamine) ratio and the film electoactivity can be easily controlled. Then, carbohydrate motifs are covalently anchored to the primary amine groups by a straightforward route using divinylsulfone chemistry. The recognition-driven assembly of the lectin concanavalin A (Con A) and the glycoenzyme glucose oxidase (GOx) onto mannosylated surfaces is demonstrated by surface plasmon resonance spectroscopy. Furthermore, the bioelectrocatalytic glucose detection mediated by the assembled enzyme is studied for all-plastic and gold electrodes. Interestingly, the synergistic combination of conducting polymers and recognition-directed assembly leads to a 2.7-fold enhancement of the bioelectrocatalitic signal. Finally, it is proved that Con A/GOx nanoarchitectures can be constructed onto PEDOT platforms using the layer-by-layer technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions
Autor:Sappia, L.D.; Piccinini, E.; Marmisollé, W.; Santilli, N.; Maza, E.; Moya, S.; Battaglini, F.; Madrid, R.E.; Azzaroni, O.
Filiación:Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
Instituto Superior de Investigaciones Biológicas, CONICET, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904AMD, Argentina
Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramón 182, San Sebastián, Gipuzkoa 20009, Spain
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:bioelectrochemistry; biosensing; glucose oxidase; molecular recognition; PEDOT
Año:2017
Volumen:4
Número:17
DOI: http://dx.doi.org/10.1002/admi.201700502
Título revista:Advanced Materials Interfaces
Título revista abreviado:Adv. Mater. Interfaces
ISSN:21967350
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21967350_v4_n17_p_Sappia

Referencias:

  • Hideki, S., Louis, E.J., Macdiarmid, A.G., Chiang, C.K., Heeger, A.J., (1977) Chem. Commun., p. 578
  • Heeger, A.J., (2001) Angew. Chem., Int. Ed. Engl., 40, p. 2591
  • Katz, H.E., Huang, J., (2009) Annu. Rev. Mater. Res., 39, p. 71
  • Kaur, G., Adhikari, R., Cass, P., Bown, M., Gunatillake, P., (2015) RSC Adv., 5, p. 37553
  • Ćirić-Marjanović, G., (2013) Synth. Met., 177, p. 1
  • Mabeck, J.T., Malliaras, G.G., (2005) Anal. Bioanal. Chem., 384, p. 343
  • Shim, N.Y., Bernards, D.A., Macaya, D.J., DeFranco, J.A., Nikolou, M., Owens, R.M., Malliaras, G.G., (2009) Sensors, 9, p. 9896
  • Bernards, D.A., Macaya, D.J., Nikolou, M., DeFranco, J.A., Takamatsu, S., Malliaras, G.G., (2008) J. Mater. Chem., 18, p. 116
  • Zhu, Z.-T., Mabeck, J.T., Zhu, C., Cady, N.C., Batt, C.A., Malliaras, G.G., (2004) Chem. Commun., p. 1556
  • Gualandi, I., Marzocchi, M., Scavetta, E., Calienni, M., Bonfiglio, A., Fraboni, B., (2015) J. Mater. Chem. B, 3, p. 6753
  • Kim, N., Kang, H., Lee, J.H., Kee, S., Lee, S.H., Lee, K., (2015) Adv. Mater., 27, p. 2317
  • Owens, R.M., Malliaras, G.G., (2010) MRS Bull., 35, p. 449
  • Rozlosnik, N., (2009) Anal. Bioanal. Chem., 395, p. 637
  • Battista, E., Lettera, V., Villani, M., Calestani, D., Gentile, F., Netti, P.A., Iannotta, S., Coppedè, N., (2017) Org. Electron., 40, p. 51
  • Wei, F., Liao, W., Xu, Z., Yang, Y., Wong, D.T., Ho, C.M., (2009) Small, 5, p. 1784
  • Willner, I., Willner, B., (2001) Trends Biotechnol., 19, p. 222
  • Katz, E., Willner, I., (2004) Angew. Chem., Int. Ed. Engl., 43, p. 6042
  • Pardo-Yissar, V., Katz, E., Willner, I., Kotlyar, A.B., Sanders, C., Lill, H., (2000) Faraday Discuss., 116, p. 119
  • Baron, R., Willner, B., Willner, I., (2007) Chem. Commun., p. 323
  • Sheldon, R.A., van Pelt, S., (2013) Chem. Soc. Rev., 42, p. 6223
  • Scouten, W., Luong, J., Stephenbrown, R., (1995) Trends Biotechnol., 13, p. 178
  • Sarikaya, M., Tamerler, C., Jen, A.K.-Y., Schulten, K., Baneyx, F., (2003) Nat. Mater., 2, p. 577
  • Arter, J.A., Taggart, D.K., McIntire, T.M., Penner, R.M., Weiss, G.A., (2010) Nano Lett., 10, p. 4858
  • Lautner, G., Kaev, J., Reut, J., Öpik, A., Rappich, J., Syritski, V., Gyurcsányi, R.E., (2011) Adv. Funct. Mater., 21, p. 591
  • Mohan, K., Donavan, K.C., Arter, J.A., Penner, R.M., Weiss, G.A., (2013) J. Am. Chem. Soc., 135, p. 7761
  • Galán, T., Prieto-Simón, B., Alvira, M., Eritja, R., Götz, G., Bäuerle, P., Samitier, J., (2015) Biosens. Bioelectron., 74, p. 751
  • Strakosas, X., Wei, B., Martin, C., Owens, R.M., Wei, B., (2016) J. Mater. Chem. B, 4, p. 4952
  • Guo, Z., Liu, H., Jiang, C., Zhu, Y., Wan, M., Dai, L., Jiang, L., (2014) Small, 10, p. 2087
  • Bazaco, R.B., Gómez, R., Seoane, C., Bäuerle, P., Segura, J.L., (2009) Tetrahedron Lett., 50, p. 4154
  • Dong, L., Lu, B., Duan, X., Xu, J., Hu, D., Zhang, K., Zhu, X., Zhen, S., (2015) J. Polym. Sci., Part A: Polym. Chem., 53, p. 2238
  • Mouffouk, F., Higgins, S.J., (2006) Electrochem. Commun., 8, p. 15
  • Povlich, L.K., Cho, J.C., Leach, M.K., Corey, J.M., Kim, J., Martin, D.C., (2013) Biochim. Biophys. Acta, Gen. Subj., 1830, p. 4288
  • Bognár, J., Szucs, J., Dorkõ, Z., Horváth, V., Gyurcsányi, R.E., (2013) Adv. Funct. Mater., 23, p. 4703
  • Menaker, A., Syritski, V., Reut, J., Öpik, A., Horváth, V., Gyurcsányi, R.E., (2009) Adv. Mater., 21, p. 2271
  • Meng, W., Ge, R., Li, Z., Tong, J., Liu, T., Zhao, Q., Xiong, S., Zhou, Y., (2015) ACS Appl. Mater. Interfaces, 7, p. 14089
  • Daprà, J., Lauridsen, L.H., Nielsen, A.T., Rozlosnik, N., (2013) Biosens. Bioelectron., 43, p. 315
  • Kiilerich-Pedersen, K., Daprà, J., Cherré, S., Rozlosnik, N., (2013) Biosens. Bioelectron., 49, p. 374
  • Andersen, K.B., Christiansen, N.O., Castillo-León, J., Rozlosnik, N., Svendsen, W.E., (2013) Org. Electron.: Phys. Mater. Appl., 14, p. 1370
  • Collazos-Castro, J.E., Hernández-Labrado, G.R., Polo, J.L., García-Rama, C., (2013) Biomaterials, 34, p. 3603
  • Vara, H., Collazos-Castro, J.E., (2015) ACS Appl. Mater. Interfaces, 7, p. 27016
  • Strakosas, X., Sessolo, M., Hama, A., Rivnay, J., Stavrinidou, E., Malliaras, G.G., Owens, R.M., (2014) J. Mater. Chem. B, 2, p. 2537
  • Reichardt, N.C., Martín-Lomas, M., Penadés, S., (2013) Chem. Soc. Rev., 42, p. 4358
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071
  • Hoshi, T., Akase, S., Anzai, J., (2002) Langmuir, 18, p. 7024
  • Cortez, M.L., Pallarola, D., Ceolín, M., Azzaroni, O., Battaglini, F., (2012) Chem. Commun., 48, p. 10868
  • Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O., (2015) Chem. Commun., 51, p. 14754
  • Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O., (2016) Mol. Syst. Eng., 1, p. 155
  • Garreau, S., Louarn, G., Buisson, J.P., Froyer, G., Lefrant, S., (1999) Macromolecules, 32, p. 6807
  • Schaarschmidt, A., Farah, A.A., Aby, A., Helmy, A.S., (2009) J. Phys. Chem. B, 113, p. 9352
  • Marmisollé, W.A., Irigoyen, J., Gregurec, D., Moya, S., Azzaroni, O., (2015) Adv. Funct. Mater., 25, p. 4144
  • Song, X., Ma, Y., Wang, C., Dietrich, P.M., Unger, W.E.S., Luo, Y., (2012) J. Phys. Chem. C, 116, p. 12649
  • Marmisollé, W.A., Maza, E., Moya, S., Azzaroni, O., (2016) Electrochim. Acta, 210, p. 435
  • Jönsson, S.K., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A., Salaneck, W., Fahlman, M., (2003) Synth. Met., 139, p. 1
  • Svennersten, K., Bolin, M.H., Jager, E.W.H., Berggren, M., Richter-Dahlfors, A., (2009) Biomaterials, 30, p. 6257
  • Arduini, F., Giorgio, F.D., Amine, A., Cataldo, F., Moscone, D., Palleschi, G., (2010) Anal. Lett., 43, p. 1688
  • Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods: Fundamentals and Applications, , Wiley, New York
  • Cheng, D., Shang, F., Ratner, J., (2012) Bioconjugate Chem., 100, p. 130
  • Wang, H., Cheng, F., Li, M., Peng, W., Qu, J., (2015) Langmuir, 31, p. 3413
  • Lancuski, A., Bossard, F., Fort, S., (2013) Biomacromolecules, 14, p. 1877
  • Baba, A., Lübben, J., Tamada, K., Knoll, W., (2003) Langmuir, p. 9058
  • Willner, I., Rubin, S., Cohen, Y., (1993) J. Am. Chem. Soc., 113, p. 4937
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071
  • Prime, K., Whitesides, G., (1991) Science, 252, p. 1164
  • Ostuni, E., Chapman, R.G., Holmlin, R.E., Takayama, S., Whitesides, G.M., (2001) Langmuir, 17, p. 5605
  • Hederos, M., Konradsson, P., Liedberg, B., (2005) Langmuir, 21, p. 2971
  • Yu, A., Shang, J., Cheng, F., Paik, B.A., Kaplan, J.M., Andrade, R.B., Ratner, D.M., (2012) Langmuir, 28, p. 11265
  • Wîlner, I., (2005) Bioelectronics: From Theory to Applications, , (Ed, WILEY-VCH, Weinheim
  • Bourdillon, C., Demaille, C., Moiroux, J., Savéant, J.-M., (1996) Acc. Chem. Res., 29, p. 529
  • Lvov, Y., Möhwald, H., (2000) Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology, , (Eds, Marcel Dekker, New York
  • Bourdillon, C., Demaille, C., Gueris, J., Moiroux, J., Saveant, J.M., (1993) J. Am. Chem. Soc., 115, p. 12264
  • Piro, B., Dang, L.A., Pham, M.C., Fabiano, S., Tran-Minh, C., (2001) J. Electroanal. Chem., 512, p. 101
  • Rechendorff, K., Hovgaard, M.B., Foss, M., Zhdanov, V.P., Besenbacher, F., (2006) Langmuir, 22, p. 10885
  • Piccinini, E., Bliem, C., Reiner-Rozman, C., Battaglini, F., Azzaroni, O., Knoll, W., (2017) Biosens. Bioelectron., 92, p. 661
  • Xiao, X., Wang, M., Li, H., Si, P., (2013) Talanta, 116, p. 1054
  • Fabiano, S., Tran-Minh, C., Piro, B., Dang, L.A., Pham, M.C., Vittori, O., (2002) Mater. Sci. Eng., C, 21, p. 61
  • Nien, P.-C., Tung, T.-S., Ho, K.-C., (2006) Electroanalysis, 18, p. 1408
  • Chiu, J.-Y., Yu, C.-M., Yen, M.-J., Chen, L.-C., (2009) Biosens. Bioelectron., 24, p. 2015
  • Wisitsoraat, A., Pakapongpan, S., Sriprachuabwong, C., Phokharatkul, D., Sritongkham, P., Lomas, T., Tuantranont, A., (2013) J. Electroanal. Chem., 704, p. 208
  • Park, J., Kim, H.K., Son, Y., (2008) Sens. Actuators, B, 133, p. 244
  • Ma, F., Rehman, A., Liu, H., Zhang, J., Zhu, S., Zeng, X., (2015) Anal. Chem., 87, p. 1560
  • Williamson, A., Ferro, M., Leleux, P., Ismailova, E., Kaszas, A., Doublet, T., Quilichini, P., Malliaras, G.G., (2015) Adv. Mater., 27, p. 4405
  • Winther-Jensen, B., Breiby, D.W., West, K., (2005) Synth. Met., 152, p. 1
  • Larsen, S.T., Vreeland, R.F., Heien, M.L., Taboryski, R., (2012) Analyst, 137, p. 1831
  • Hatakeyama, T., Murakami, K., Miyamoto, Y., Yamasaki, N., (1996) Anal. Biochem., 237, p. 188
  • Haas, H., Möhwald, H., (1989) Thin Solid Films, 180, p. 101
  • Kim, T.Y., Kim, J.E., Suh, K.S., (2006) Polym. Int., 55, p. 80
  • Knoll, W., (1998) Annu. Rev. Phys. Chem., 49
  • Forzani, E.S., Otero, M., Pérez, M.A., Teijelo, M.L., Calvo, E.J., (2002) Langmuir, 18, p. 4020
  • Zhao, H., Brown, P.H., Schuck, P., (2011) Biophys. J., 100, p. 2309
  • Ai, H., Huang, X., Zhu, Z., Liu, J., Chi, Q., Li, Y., Li, Z., Ji, X., (2008) Biosens. Bioelectron., 24, p. 1048

Citas:

---------- APA ----------
Sappia, L.D., Piccinini, E., Marmisollé, W., Santilli, N., Maza, E., Moya, S., Battaglini, F.,..., Azzaroni, O. (2017) . Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions. Advanced Materials Interfaces, 4(17).
http://dx.doi.org/10.1002/admi.201700502
---------- CHICAGO ----------
Sappia, L.D., Piccinini, E., Marmisollé, W., Santilli, N., Maza, E., Moya, S., et al. "Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions" . Advanced Materials Interfaces 4, no. 17 (2017).
http://dx.doi.org/10.1002/admi.201700502
---------- MLA ----------
Sappia, L.D., Piccinini, E., Marmisollé, W., Santilli, N., Maza, E., Moya, S., et al. "Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions" . Advanced Materials Interfaces, vol. 4, no. 17, 2017.
http://dx.doi.org/10.1002/admi.201700502
---------- VANCOUVER ----------
Sappia, L.D., Piccinini, E., Marmisollé, W., Santilli, N., Maza, E., Moya, S., et al. Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions. Adv. Mater. Interfaces. 2017;4(17).
http://dx.doi.org/10.1002/admi.201700502