Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Underpotential deposition (UPD) of cadmium on 15 nm gold nanoparticles stabilized by 1-mercapto-undecane-11-tetra(ethylene glycol) has been studied by cyclic voltammetry (CV). Particles are adsorbed to a hanging mercury drop electrode (HMDE). It is shown that single cadmium atoms are deposited onto the same surface sites that are active for adsorptive hydrogen reduction when cadmium is absent. Depending on the solution pH, the deposition of cadmium atoms either blocks hydrogen reduction or vice versa, depending on which process occurs first during the cathodic potential sweep. Another remarkable finding is that single cadmium atoms UPD-deposited are also active for adsorptive hydrogen reduction. The use of CV to interrogate surface protected nanoparticles adsorbed on a HMDE represents a powerful method to study the electrocatalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Site-Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms
Autor:Brust, M.; Ramírez, S.A.; Gordillo, G.J.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, INQUIMAE (CONICET), Universidad de Buenos Aires, Argentina
Ciudad Universitaria, Pabellón 2 (1428), Buenos Aires, Argentina
Area Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150(1613), Los Polvorines, Buenos Aires, Argentina
Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
Palabras clave:cadmium; electrochemistry; gold nanoparticles; proton reduction; underpotential deposition; Atoms; Cadmium; Catalyst activity; Cyclic voltammetry; Deposition; Electrochemistry; Ethylene; Ethylene glycol; Fiber optic sensors; Hydrogen; Metal nanoparticles; Reduction; Cadmium atoms; Cathodic potentials; Electrocatalytic activity; Hanging mercury drop electrodes; Hydrogen reduction; Proton reduction; Site-specific modifications; Underpotential deposition; Gold nanoparticles
Año:2018
Volumen:5
Número:12
Página de inicio:1586
Página de fin:1590
DOI: http://dx.doi.org/10.1002/celc.201800282
Título revista:ChemElectroChem
Título revista abreviado:ChemElectroChem
ISSN:21960216
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21960216_v5_n12_p1586_Brust

Referencias:

  • Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J., Delmon, B., (1993) J. Catal., 144, pp. 175-192
  • Valden, M., Lai, X., Goodman, D.W., (1998) Science, 281, pp. 1647-1650
  • Sanchez, R.M.T., Ueda, A., Tanaka, K., Haruta, M., (1997) J. Catal., 168, pp. 125-127
  • Rainer, D.R., Xu, C., Goodman, D.W., (1997) J. Mol. Catal. A, 119, pp. 307-325
  • Nkosi, B., Adams, M.D., Coville, N.J., Hutchings, G.J., (1991) J. Catal., 128, pp. 378-386
  • Nkosi, B., Coville, N.J., Hutchings, G.J., Adams, M.D., Friedl, J., Wagner, F.E., (1991) J. Catal., 128, pp. 366-377
  • Hutchings, G.J., (1996) Gold Bull., 29, pp. 123-130
  • Zhang, Y., Cui, X., Shi, F., Deng, Y., (2012) Chem. Rev., 112, pp. 2467-2505
  • Mirkhalaf, F., Schiffrin, D.J., (2010) Langmuir, 26, pp. 14995-15001
  • Yan, S., Zhang, S., Lin, Y., Liu, G., (2011) J. Phys. Chem. C, 115, pp. 6986-6993
  • Kamat, P.V., (2002) J. Phys. Chem. B, 106, pp. 7729-7744
  • Comotti, M., Della Pina, C., Matarrese, R., Rossi, M., (2004) Angew. Chem. Int. Ed. Engl., 43, pp. 5812-5815
  • Tsunoyama, H., Sakurai, H., Ichikuni, N., Negishi, Y., Tsukuda, T., (2004) Langmuir, 20, pp. 11293-11296
  • Tsunoyama, H., Sakurai, H., Negishi, Y., Tsukuda, T., (2005) J. Am. Chem. Soc., 127, pp. 9374-9375
  • Wittstock, A., Baumer, M., (2014) Acc. Chem. Res., 47, pp. 731-739
  • Kettemann, F., Witte, S., Birnbaum, A., Paul, B., Clavel, G., Pinna, N., Rademann, K., Polte, J., (2017) ACS Catal., 7, pp. 8247-8254
  • Murray, R.W., (2008) Chem. Rev., 108, pp. 2688-2720
  • Young, S.L., Kellon, J.E., Hutchison, J.E., (2016) J. Am. Chem. Soc., 138, pp. 13975-13984
  • Brust, M., Gordillo, G.J., (2012) J. Am. Chem. Soc., 134, pp. 3318-3321
  • Manolova, M., Ivanova, V., Kolb, D.M., Boyen, H.G., Ziemann, P., Büttner, M., Romanyuk, A., Oelhafen, P., (2005) Surf. Sci., 590, pp. 146-153
  • Ivanova, V., Baunach, T., Kolb, D.M., (2005) Electrochim. Acta, 50, pp. 4283-4288
  • Oyamatsu, D., Kuwabata, S., Yoneyam, H., (1999) J. Electroanal. Chem., 473, pp. 59-67
  • Jennings, G.K., Laibinis, P.E., (1997) J. Am. Chem. Soc., 119, pp. 5208-5214
  • Schneeweiss, M.A., Hagenström, H., Esplandiu, M.J., Kolb, D.M., (1999) Appl. Phys. A, 69, pp. 537-551
  • Oyamatsu, D., Nishizawa, M., Kuwabata, S., Yoneyama, H., (1998) Langmuir, 14, pp. 3298-3302
  • Gordillo, G.J., Krpetic, Z., Brust, M., (2014) ACS Nano, 8, pp. 6074-6080
  • Sudha, V., Sangaranarayanan, M.V., (2002) J. Phys. Chem. B, 106, pp. 2699-2707
  • Oviedo, O.A., Reinaudi, L., Leiva, E.P.M., (2012) Electrochem. Commun., 21, pp. 14-17
  • Sudha, V., Sangaranarayanan, M.V., (2005) J. Chem. Sci., 17, pp. 207-218
  • Oviedo, O., Vélez, P., Macagno, V., Leiva, E., (2015) Surf. Sci., 631, pp. 23-34
  • Niece, B.K., Gewirth, A.A., (1997) Langmuir, 13, pp. 6302-6309
  • Hsieh, S.J., Gewirth, A., (2000) Langmuir, 16, pp. 9501-9542
  • Bondos, J.C., Gewirth, A.A., Nuzzo, R.G., (1996) J. Phys. Chem., 100, pp. 8617-8620
  • Carino, E.V., Crooks, R.M., (2011) Langmuir, 27, pp. 4227-4235
  • Yancey, D.F., Carino, E.V., Crooks, R.M., (2010) J. Am. Chem. Soc., 132, pp. 10988-10989
  • Carino, E.V., Kim, H.Y., Henkelman, G., Crooks, R.M., (2012) J. Am. Chem. Soc., 134, pp. 4153-4162
  • Knecht, M.R., Weir, M.G., Myers, V.S., Pyrz, W.D., Ye, H., Petkov, V., Buttrey, D.J., Crooks, R.M., (2008) Chem. Mater., 20, pp. 5218-5228
  • Kumar, A., Buttry, D.A., (2015) J. Phys. Chem. C, 119, pp. 16927-16933
  • Campbell, F.W., Compton, R.G., (2010) Int. J. Electrochem. Sci., 5, pp. 407-413
  • Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G., (2007) Anal. Chem., 79, pp. 4215-4221

Citas:

---------- APA ----------
Brust, M., Ramírez, S.A. & Gordillo, G.J. (2018) . Site-Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms. ChemElectroChem, 5(12), 1586-1590.
http://dx.doi.org/10.1002/celc.201800282
---------- CHICAGO ----------
Brust, M., Ramírez, S.A., Gordillo, G.J. "Site-Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms" . ChemElectroChem 5, no. 12 (2018) : 1586-1590.
http://dx.doi.org/10.1002/celc.201800282
---------- MLA ----------
Brust, M., Ramírez, S.A., Gordillo, G.J. "Site-Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms" . ChemElectroChem, vol. 5, no. 12, 2018, pp. 1586-1590.
http://dx.doi.org/10.1002/celc.201800282
---------- VANCOUVER ----------
Brust, M., Ramírez, S.A., Gordillo, G.J. Site-Specific Modification of Gold Nanoparticles by Underpotential Deposition of Cadmium Atoms. ChemElectroChem. 2018;5(12):1586-1590.
http://dx.doi.org/10.1002/celc.201800282