Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dismutation of electrochemically generated soluble lithium superoxide with the formation of a lithium peroxide deposit on Au has been studied by addition of lithium ions and following the mass uptake detected by the electrochemical quartz crystal microbalance at the open-circuit potential and the surface morphology evolution by using atomic force microscopy. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:New Evidence of LiO2 Dismutation in Lithium–Air Battery Cathodes
Autor:del Pozo, M.; Torres, W.R.; Herrera, S.E.; Calvo, E.J.
Filiación:Department: INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pabellón 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:atomic force microscopy; electrochemical quartz crystal microbalance; lithium; rotating ring-disk electrode; superoxide; Atomic force microscopy; Electric batteries; Electrodes; Gold deposits; Lithium-ion batteries; Oxygen; Quartz; Quartz crystal microbalances; Dismutation; Electrochemical quartz crystal microbalance; Lithium ions; Lithium peroxides; Morphology evolution; Open circuit potential; Rotating ring-disk electrode; Superoxides; Lithium
Año:2016
Volumen:3
Número:10
Página de inicio:1537
Página de fin:1540
DOI: http://dx.doi.org/10.1002/celc.201600081
Título revista:ChemElectroChem
Título revista abreviado:ChemElectroChem
ISSN:21960216
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21960216_v3_n10_p1537_delPozo

Referencias:

  • Abraham, K.M., (2013) Lithium-air and other batteries beyond lithium-ion batteries, , (Ed., K. M. A. Bruno Scrosati, Walter van Schalkwijk, Jusef Hassoun, John Wiley & Sons, Inc2013
  • Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., Luntz, A.C., (2015) Nat. Chem., 7, pp. 50-56
  • Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.M., (2012) Nat. Mater., 11, p. 172
  • Freunberger, S.A., Chen, Y., Peng, Z., Griffin, J.M., Hardwick, L.J., Barde, F., Novak, P., Bruce, P.G., (2011) J. Am. Chem. Soc., 133, pp. 8040-8047
  • Hardwick, L.J., Bruce, P.G., (2012) Current Opinion in Solid State and Materials Science, 16, pp. 178-185
  • Abraham, K.M., Jiang, Z., (1996) J. Electrochem. Soc., 143, pp. 1-5
  • Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G., (2006) J. Am. Chem. Soc., 128, pp. 1390-1393
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., (2010) J. Phys. Chem. C, 114, pp. 9178-9186
  • McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C., (2011) J. Phys. Chem. Lett., 2, pp. 1161-1166
  • Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., Nazar, L.F., (2013) Energy Environ. Sci., 6, pp. 1772-1778
  • Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., (2014) Nat. Chem., 6, pp. 1091-1099
  • Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Barde, F., Novak, P., Bruce, P.G., (2011) Angew. Chem. Int. Ed., 50, pp. 6351-6355
  • (2011) Angew. Chem., 123, pp. 6475-6479
  • Trahan, M.J., Mukerjee, S., Plicht, E.J., Hendrickson, M.A., Abraham, K.M., (2013) J. Electrochem. Soc., 160, pp. 259-267
  • Lopez, N., Graham, D.J., McGuire, R., Jr., Alliger, G.E., Shao-Horn, Y., Cummins, C.C., Nocera, D.G., (2012) Science, 335, pp. 450-453
  • Zheng, D., Wang, Q., Lee, H.S., Yang, X.Q., Qu, D., (2013) Chem. Eur. J., 19, pp. 8679-8683
  • Hassoun, J., Croce, F., Armand, M., Scrosati, B., (2011) Angew. Chem. Int. Ed., 50, pp. 2999-3002
  • (2011) Angew. Chem., 123, pp. 3055-3058
  • Jung, H.G., Hassoun, J., Park, J.B., Sun, Y.K., Scrosati, B., (2012) Nat. Chem., 4, pp. 579-585
  • Zhai, D., Wang, H.H., Lau, K.C., Gao, J., Redfern, P.C., Kang, F., Li, B., Curtiss, L.A., (2014) J. Phys. Chem. Lett., 5, pp. 2705-2710
  • Yu, Q., Ye, S., (2015) J. Phys. Chem. C, 119, pp. 12236-12250
  • Luntz, A.C., McCloskey, B.D., (2014) Chem. Rev., 114, pp. 11721-11750
  • Marchini, F., Herrera, S., Torres, W., Tesio, A.Y., Williams, F.J., Calvo, E.J., (2015) Langmuir, 31, pp. 9236-9245
  • Torres, W.R., Cantoni, L., Tesio, A.Y., del Pozo, M., Calvo, E.J., (2016) J. Electroanal. Chem., 765, pp. 45-51
  • Torres, W., Mozhzhukhina, N., Tesio, A.Y., Calvo, E.J., (2014) J. Electrochem. Soc., 161, pp. 2204-2209
  • Laoire, O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., (2009) J. Phys. Chem. C, 113, pp. 20127-20134
  • Marchini, F., Herrera, S.E., Calvo, E.J., Williams, F.J., (2016) Surf. Sci., 646, pp. 154-159

Citas:

---------- APA ----------
del Pozo, M., Torres, W.R., Herrera, S.E. & Calvo, E.J. (2016) . New Evidence of LiO2 Dismutation in Lithium–Air Battery Cathodes. ChemElectroChem, 3(10), 1537-1540.
http://dx.doi.org/10.1002/celc.201600081
---------- CHICAGO ----------
del Pozo, M., Torres, W.R., Herrera, S.E., Calvo, E.J. "New Evidence of LiO2 Dismutation in Lithium–Air Battery Cathodes" . ChemElectroChem 3, no. 10 (2016) : 1537-1540.
http://dx.doi.org/10.1002/celc.201600081
---------- MLA ----------
del Pozo, M., Torres, W.R., Herrera, S.E., Calvo, E.J. "New Evidence of LiO2 Dismutation in Lithium–Air Battery Cathodes" . ChemElectroChem, vol. 3, no. 10, 2016, pp. 1537-1540.
http://dx.doi.org/10.1002/celc.201600081
---------- VANCOUVER ----------
del Pozo, M., Torres, W.R., Herrera, S.E., Calvo, E.J. New Evidence of LiO2 Dismutation in Lithium–Air Battery Cathodes. ChemElectroChem. 2016;3(10):1537-1540.
http://dx.doi.org/10.1002/celc.201600081