Artículo

Barberini, M.L.; Sigaut, L.; Huang, W.; Mangano, S.; Juarez, S.P.D.; Marzol, E.; Estevez, J.; Obertello, M.; Pietrasanta, L.; Tang, W.; Muschietti, J. "Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor" (2018) Plant Reproduction. 31(2):159-169
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Key message: In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Abstract: Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca2+]cyt) gradient and the actin cytoskeleton. This [Ca2+]cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca2+]cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca2+]cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca2+ homeostasis, evaluating how the [Ca2+]cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant PIIA-type Ca2+-ATPases, increased [Ca2+]cyt in the subapical zone, leading to the disappearance of the Ca2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca2+]cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca2+]cyt, both inhibited pollen tube growth triggering the disappearance of the [Ca2+]cyt gradient. When CPA and 2-APB were combined, their individual inhibitory effects on pollen tube growth were partially compensated. Finally, we found that GsMTx-4, a peptide from spider venom that blocks stretch-activated Ca2+ channels, inhibited tomato pollen germination and had a heterogeneous effect on pollen tube growth, suggesting that these channels are also involved in the maintenance of the [Ca2+]cyt gradient. All these results indicate that tomato pollen tube is an excellent model to study calcium dynamics. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor
Autor:Barberini, M.L.; Sigaut, L.; Huang, W.; Mangano, S.; Juarez, S.P.D.; Marzol, E.; Estevez, J.; Obertello, M.; Pietrasanta, L.; Tang, W.; Muschietti, J.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires, C1428EHA, Argentina
National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires, C1428EHA, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EGA, Argentina
Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
Palabras clave:Calcium ATPases; Calcium concentration gradient; Ion channels; Pollen tube growth; Solanum lycopersicum; Yellow Cameleon 3.6; 2-aminoethoxydiphenyl borate; adenosine triphosphatase (calcium); boron derivative; calcium; calcium channel; calcium channel blocking agent; calmodulin; cyclopiazonic acid; fusion protein; indole derivative; MTx4 protein, Grammostola spatulata; peptide; photoprotein; plant protein; spider venom; YCaM3.6 protein; antagonists and inhibitors; cytoplasm; drug effect; endoplasmic reticulum; growth, development and aging; metabolism; pollen tube; tomato; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium-Transporting ATPases; Calmodulin; Cytoplasm; Endoplasmic Reticulum; Indoles; Luminescent Proteins; Lycopersicon esculentum; Peptides; Plant Proteins; Pollen Tube; Recombinant Fusion Proteins; Spider Venoms
Año:2018
Volumen:31
Número:2
Página de inicio:159
Página de fin:169
DOI: http://dx.doi.org/10.1007/s00497-017-0317-y
Título revista:Plant Reproduction
Título revista abreviado:Plant Reprod.
ISSN:21947953
CAS:adenosine triphosphatase (calcium); calcium, 7440-70-2, 14092-94-5; cyclopiazonic acid, 18172-33-3, 83136-88-3; 2-aminoethoxydiphenyl borate; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium-Transporting ATPases; Calmodulin; cyclopiazonic acid; Indoles; Luminescent Proteins; MTx4 protein, Grammostola spatulata; Peptides; Plant Proteins; Recombinant Fusion Proteins; Spider Venoms; YCaM3.6 protein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21947953_v31_n2_p159_Barberini

Referencias:

  • Barberini, M.L., Muschietti, J., Imaging of calcium dynamics in pollen tube cytoplasm (2015) Methods Mol Biol, 1242, pp. 49-57
  • Bonza, M.C., Loro, G., Behera, S., Wong, A., Kudla, J., Costa, A., Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor (2013) Plant Physiol, 163, pp. 1230-1241
  • Capoen, W., Den Herder, J., Sun, J., Verplancke, C., De Keyser, A., Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata (2009) Plant Cell, 21 (5), pp. 1526-1540
  • Cardenas, L., Lovy-Wheeler, A., Kunkel, J.G., Hepler, P.K., Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization (2008) Plant Physiol, 146, pp. 1611-1621
  • Damineli, D.S.C., Portes, M.T., Feijó, J.A., Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells (2017) J Exp Bot, 68 (12), pp. 3267-3281
  • Dutta, R., Robinson, K.R., Identification and characterization of stretch-activated ion channels in pollen protoplasts (2004) Plant Physiol, 135, pp. 1398-1406
  • Engstrom, E.M., Ehrhardt, D.W., Mitra, R.M., Long, S.R., Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling (2002) Plant Physiol, 128, pp. 1390-1401
  • Franklin-Tong, V.E., Drobak, B.K., Allan, A.C., Watkins, P., Trewavas, A.J., Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate (1996) Plant Cell, 8, pp. 1305-1321
  • Frietsch, S., Wang, Y.F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen (2007) Proc Natl Acad Sci USA, 104, pp. 14531-14536
  • Gao, Q.F., Gu, L.L., Wang, H.Q., Fei, C.F., Fang, X., Hussain, J., Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis (2016) Proc Natl Acad Sci USA, 113 (11), pp. 3096-3101
  • Geisler, M., Axelsen, K.B., Harper, J.F., Palmgren, M.G., Molecular aspects of higher plant P-type Ca2+-ATPases (2000) Biochim Biophys Acta, 1465, pp. 52-78. , COI: 1:CAS:528:DC%2BD3cXit1Wgtr8%3D, PID: 10748247
  • Geitmann, A., Cresti, M., Ca2+ channels control the rapid expansions in pulsating growth of Petunia hybrida pollen tubes (1998) J Plant Physiol, 152, pp. 439-447. , COI: 1:CAS:528:DyaK1cXjtlyhsLo%3D
  • Hamilton, E.S., Jensen, G.S., Maksaev, G., Katims, A., Sherp, A.M., Haswell, E.S., Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination (2015) Science, 350, pp. 438-441
  • Hepler, P.K., Winship, L.J., The pollen tube clear zone: clues to the mechanism of polarized growth (2015) J Integr Plant Biol, 57, pp. 79-92
  • Hepler, P.K., Kunkel, J.G., Rounds, C.M., Winship, L.J., Calcium entry into pollen tubes (2012) Trends Plant Sci, 17, pp. 32-38
  • Hoekema, A., Roelvink, P.W., Hooykaas, P.J.J., Schilperoort, R.A., Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells (1984) EMBO J, 3, pp. 2485-2490. , COI: 1:CAS:528:DyaL2MXhvVylsw%3D%3D, PID: 16453562
  • Holdaway-Clarke, T.L., Feijó, J.A., Hackett, G.R., Kunkel, J.G., Hepler, P.K., Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed (1997) Plant Cell, 9, pp. 1999-2010
  • Holdaway-Clarke, T.L., Weddle, N.M., Kim, S., Robi, A., Parris, C., Kunkel, J.G., Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes (2003) J Exp Bot, 54, pp. 65-72. , COI: 1:CAS:528:DC%2BD3sXlt1Kktg%3D%3D, PID: 12456756
  • Iwano, M., Shiba, H., Miwa, T., Che, F.S., Takayama, S., Nagai, T., Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis (2004) Plant Physiol, 136, pp. 3562-3571
  • Iwano, M., Entani, T., Shiba, H., Kakita, M., Nagai, T., Mizuno, H., Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth (2009) Plant Physiol, 150, pp. 1322-1334
  • Lange, M., Peiter, E., Cytosolic free calcium dynamics as related to hyphal and colony growth in the filamentous fungal pathogen Colletotrichum graminicola (2016) Fungal Genet Biol, 91, pp. 55-65
  • Liang, F., Sze, H., A high-affinity Ca2+ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin (1998) Plant Physiol, 118, pp. 817-825
  • Malhó, R., Role of 1,4,5-inositol triphosphate-induced Ca2+ release in pollen tube orientation (1998) Sex Plant Reprod, 11, pp. 231-235
  • Malhó, R., Trewavas, A.J., Localized apical increases of cytosolic free calcium control pollen tube orientation (1996) Plant Cell, 8, pp. 1935-1949
  • Martinez-Azorin, F., Cyclopiazonic acid reduces the coupling factor of the Ca2+-ATPase acting on Ca2+ binding (2004) FEBS Lett, 576, pp. 73-76
  • Maruyama, T., Kanaji, T., Nakade, S., Kanno, T., Mikoshiba, K., 2-APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release (1997) J Biochem, 122, pp. 498-505. , COI: 1:CAS:528:DyaK2sXlvFCnsLs%3D, PID: 9348075
  • McCormick, S., Lindsey, K., Transformation of tomato with Agrobacterium tumefaciens (1992) Plant Tissue Culture Manual. Supplement 1. Section B Number 6. Kluwer Academic Publishers, pp. 1-9
  • Messerli, M., Robinson, K.R., Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum (1997) J Cell Sci, 110, pp. 1269-1278. , COI: 1:CAS:528:DyaK2sXktF2mtb0%3D, PID: 9202387
  • Messerli, M.A., Creton, R., Jaffe, L.F., Robinson, K.R., Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth (2000) Dev Biol, 222, pp. 84-98
  • Michard, E., Dias, P., Feijó, J.A., Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using pHluorin and YC3.1 CaMeleon (2008) Sex Plant Reprod, 21, pp. 169-181
  • Michard, E., Lima, P.T., Borges, F., Silva, A.C., Portes, M.T., Carvalho, J.E., Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine (2011) Science, 332, pp. 434-437
  • Mills, R.F., Doherty, M.L., Lopez-Marques, R.L., Weimar, T., Dupree, P., Palmgren, M.G., ECA3, a golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis (2008) Plant Physiol, 146, pp. 116-128
  • Monteiro, D., Liu, Q., Lisboa, S., Scherer, G.E.F., Quader, H., Malho, R., Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion (2005) J Exp Bot, 56, pp. 1665-1674
  • Muschietti, J., Eyal, Y., McCormick, S., Pollen tube localization implies a role in pollen-pistil interactions for the tomato receptor-like protein kinases LePRK1 and LePRK2 (1998) Plant Cell, 10, pp. 319-330
  • Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., Miyawaki, A., Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins (2004) Proc Natl Acad Sci USA, 101, pp. 10554-10559
  • Ordenes, V.R., Moreno, I., Maturana, D., Norambuena, L., Trewavas, A., Orellana, A., In vivo analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics (2012) Cell Calcium, 52, pp. 397-404
  • Pierson, E.S., Miller, D.D., Callaham, D.A., van Aken, J., Hackett, G., Hepler, P.K., Tip localized calcium entry fluctuates during pollen tube growth (1996) Dev Biol, 174, pp. 160-173
  • Plenge-Tellechea, F., Soler, F., Fernandez-Belda, F., On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum Ca2+-ATPases by cyclopiazonic acid (1997) J Biol Chem, 272, pp. 2794-2800
  • Qu, H.Y., Shang, Z.L., Zhang, S.L., Liu, L.M., Wu, J.Y., Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia (2007) New Phytol, 174, pp. 524-536
  • Schiott, M., Romanowsky, S.M., Baekgaard, L., Jakobsen, M.K., Palmgren, M.G., Harper, J.F., A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization (2004) Proc Natl Acad Sci USA, 101, pp. 9502-9507
  • Seidler, N.W., Jona, I., Vegh, M., Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum (1989) J Biol Chem, 264, pp. 17816-17823. , COI: 1:CAS:528:DyaL1MXmt1Kqt7w%3D, PID: 2530215
  • Shang, Z.L., Ma, L.G., Zhang, H.L., He, R.R., Wang, X.C., Cui, S.J., Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+ -permeable channel which can be regulated by extracellular CaM (2005) Plant Cell Physiol, 46, pp. 598-608
  • Silverman-Gavrila, L.B., Lew, R.R., An IP3-activated Ca2+ channel regulates fungal tip growth (2002) J Cell Sci, 115, pp. 5013-5025. , COI: 1:CAS:528:DC%2BD3sXis1Ojtw%3D%3D, PID: 12432087
  • Song, L.F., Zou, J.J., Zhang, W.Z., Wu, W.H., Wang, Y., Ion transporters involved in pollen germination and pollen tube tip-growth (2009) Plant Signal Behav, 4, pp. 1193-1195. , PID: 20514245
  • Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., Teige, M., Plant organellar calcium signalling: an emerging field (2012) J Exp Bot, 63, pp. 1525-1542
  • Suchyna, T.M., Johnson, J.H., Hamer, K., Leykam, J.F., Gage, D.A., Clemo, H.F., Baumgarten, C.M., Sachs, F., Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels (2000) J Gen Physiol, 115, pp. 583-598
  • Sze, H., Liang, F., Hwang, I., Curran, A.C., Harper, J.F., Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast (2000) Annu Rev Plant Physiol Plant Mol Biol, 51, pp. 433-462
  • Twell, D., Yamaguchi, J., McCormick, S., Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis (1990) Development, 109, pp. 705-713. , COI: 1:CAS:528:DyaK3cXls1Kkurc%3D, PID: 2401221
  • Wang, Y.F., Fan, L.M., Zhang, W.Z., Zhang, W., Wu, W.H., Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments (2004) Plant Physiol, 136, pp. 3892-3904
  • Wu, J., Qu, H., Jin, C., Shang, Z., Wu, J., Xu, G., Gao, Y., Zhang, S., cAMP activates hyperpolarization-activated Ca2+ channels in the pollen of Pyrus pyrifolia (2011) Plant Cell Rep, 30 (7), pp. 1193-1200
  • Zhang, J., Vanneste, S., Brewer, P.B., Michniewicz, M., Grones, P., Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity (2011) Dev Cell, 20, pp. 855-866

Citas:

---------- APA ----------
Barberini, M.L., Sigaut, L., Huang, W., Mangano, S., Juarez, S.P.D., Marzol, E., Estevez, J.,..., Muschietti, J. (2018) . Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reproduction, 31(2), 159-169.
http://dx.doi.org/10.1007/s00497-017-0317-y
---------- CHICAGO ----------
Barberini, M.L., Sigaut, L., Huang, W., Mangano, S., Juarez, S.P.D., Marzol, E., et al. "Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor" . Plant Reproduction 31, no. 2 (2018) : 159-169.
http://dx.doi.org/10.1007/s00497-017-0317-y
---------- MLA ----------
Barberini, M.L., Sigaut, L., Huang, W., Mangano, S., Juarez, S.P.D., Marzol, E., et al. "Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor" . Plant Reproduction, vol. 31, no. 2, 2018, pp. 159-169.
http://dx.doi.org/10.1007/s00497-017-0317-y
---------- VANCOUVER ----------
Barberini, M.L., Sigaut, L., Huang, W., Mangano, S., Juarez, S.P.D., Marzol, E., et al. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reprod. 2018;31(2):159-169.
http://dx.doi.org/10.1007/s00497-017-0317-y