Artículo

Montoya, S.; Sánchez, Ó.J.; Levin, L.; Colciencias "Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation" (2014) 2nd Colombian Congress on Computational Biology and Bioinformatics, CCBCOL 2013. 232:371-377
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This research was conducted by growing three species of white-rot fungi (Coriolus versicolor, Lentinus edodes and Pleurotus ostreatus) on twelve formulations of solid substrates using mixtures of different lignocellulosic materials, calcium carbonate salts and copper sulphate (II). The objective of this study was to propose a mathematical model to describe the biomass growth, lignocellulolytic enzymes biosynthesis, production and consumption of reducing sugars, consumption of cellulose and hemicellulose, and lignin degradation. The three species of fungi grew well on all substrate formulations. The response obtained was evaluated by the titles of all enzymatic activities for several combinations fungus - substrate. C. versicolor had the highest capacity to degrade lignin, cellulose and hemicellulose for all combinations, with 65% as the maximum lignin degradation for F1 combination, and 43% cellulose degradation for F9 combination. The mathematical model proposed for C. versicolor consisted of eleven differential equations to describe the behavior of the cultivation system from the experimental data of all the resulting combinations in order to obtain the largest capacity degradation of lignocellulosic substrates by the fungus. In this work, we present the modeling results for combination F9 fungus - substrate combination, which showed the best behavior related to the degradation of lignocellulosic materials used. The results obtained demonstrated that the model proposed represents a powerful tool to design solid-substrate fermentation processes. © Springer International Publishing Switzerland 2014.

Registro:

Documento: Artículo
Título:Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation
Autor:Montoya, S.; Sánchez, Ó.J.; Levin, L.; Colciencias
Ciudad:Manizales
Filiación:Institute of Agricultural Biotechnology, Universidad de Caldas, Manizales, Colombia
Department of Biodiversity and Experimental Biology, PRHIDEB-CONICET, FCEN, Universidad de Buenos Aires, Argentina
Palabras clave:Degradation of lignocellulosic materials; Lignocellulolytic enzymes; Lignocellulosic biomass; Mathematical modeling; White-rot fungi; Biochemistry; Bioinformatics; Cellulose; Cultivation; Differential equations; Enzymes; Fermentation; Fungi; Lignin; Mathematical models; Cellulose and hemicellulose; Lignocellulolytic enzymes; Lignocellulosic biomass; Lignocellulosic material; Lignocellulosic substrates; Production and consumption; Solid-state fermentation; White rot fungi; Substrates
Año:2014
Volumen:232
Página de inicio:371
Página de fin:377
DOI: http://dx.doi.org/10.1007/978-3-319-01568-2_52
Título revista:2nd Colombian Congress on Computational Biology and Bioinformatics, CCBCOL 2013
Título revista abreviado:Adv. Intell. Sys. Comput.
ISSN:21945357
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21945357_v232_n_p371_Montoya

Referencias:

  • Dormand, J.R., Prince, P.J., A family of embedded Runge-Kutta formulae (1980) Journal of Computational and Applied Mathematics, 6, pp. 19-26
  • Ikasari, L., Mitchell, D.A., Two-phase model of yhe kinetics of growth of Rhizopus oligosporus in membrana culture (2000) Biotechnology Bioengineering, 68, pp. 619-627
  • Leterme, P., (2010) Análisis De Alimentos Y Forrajes. Protocolos De Laboratorio, , Universidad Nacional de Colombia Sede Palmira, Palmira
  • Levin, L., (1998) Biodegradación De Materiales Lignocelulósicos Por Trametes Trogii (Aphyllophorales, Basidiomycetes), , Tesis Doctoral, Universidad de Buenos Aires, Buenos Aires
  • Levin, L., Herrmann, C., Papinutti, V.L., Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology (2008) Biochemical Engineering Journal, 39, pp. 207-214
  • Meagher, M.M., Tao, B.Y., Chow, J.M., Reilly, P.J., Kinetics and subsite mapping of β - D-xylobiose and D-xylose producing Aspergillus niger endo-β-1,4-D-xylanase (1988) Carbohydrates Resources, 173, pp. 273-283
  • Miller, G.L., Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar (1959) Analytical Chemistry, 31 (3), pp. 426-428
  • Mitchell, D., Stuart, D., Tanner, R., Solid-State fermentation - Microbial growth kinetics (1999) The Encyclopedia of Bioprocess Technology: Fermentation,Biocatalysis and Bioseparation, , Wiley, New York
  • Mitchell, D., von Meien, O., Krieger, N., Recent developments in modeling of solid-state fermentation: Heat and mass transfer in bioreactors (2002) Biochemical Engineering Journal, 13, pp. 137-147
  • Mitchell, D.A., von Meien, O.F., Krieger, N., Dalsenter, F.D., A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solidstate fermentation (2004) Biochemical Engineering Journal, 17, pp. 15-26
  • Montoya, S., (2012) Obtención De Enzimas Lignocelulolíticas Y Polisacáridos a Partir De Residuos Lignocelulósicos Del Departamento De Caldas Empleando Macromicetos De Pudrición Blanca Por Fermentación Sumergida Y Fermentación En Estado Sólido, , Ph.D. Thesis, Universidad de Caldas, Manizales, Colombia
  • Paszczczynski, A., Crawford, R., Huyn, V., Manganese peroxidase of Phanerochaete chrysosporium purification (1988) Methods Enzymology, 161, pp. 264-270
  • Paszczynski, A., Crawford, R.L., Degradation of azo compounds by ligninases from Phanerochaete chrysosporium Involment of veratryl alcohol (1991) Biochemistry Biophysics Resources Communications, 178, pp. 1056-1063
  • Plassard, C., Mousain, D., Salsac, L., Estimation of mycelial growth of basidiomycetes by means of chitin determination (1982) Phytochemistry, 21, pp. 345-348
  • Sangsurasak, P., Nopharatana, M., Mitchell, D., Mathematical modeling of the growth of filamentous fungi in solid-state fermentation (1996) Journal Science Industrial Resources, 55, pp. 333-342
  • Tengerdy, R.P., Szakacs, G., Bioconversion of lignocellulose in solid substrate fermentation (2003) Biochemical Engineering Journal, 13, pp. 169-179
  • Van de Lagemaat, J., Pyle, D.L., Modelling the uptake and growth kinetics of Penicillium glabrum in a tannic acid-containing solid-state fermentation for tannase production (2005) Process Biochemistry, 40, pp. 1773-1782A4 - Colciencias

Citas:

---------- APA ----------
Montoya, S., Sánchez, Ó.J., Levin, L. & Colciencias (2014) . Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation. 2nd Colombian Congress on Computational Biology and Bioinformatics, CCBCOL 2013, 232, 371-377.
http://dx.doi.org/10.1007/978-3-319-01568-2_52
---------- CHICAGO ----------
Montoya, S., Sánchez, Ó.J., Levin, L., Colciencias "Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation" . 2nd Colombian Congress on Computational Biology and Bioinformatics, CCBCOL 2013 232 (2014) : 371-377.
http://dx.doi.org/10.1007/978-3-319-01568-2_52
---------- MLA ----------
Montoya, S., Sánchez, Ó.J., Levin, L., Colciencias "Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation" . 2nd Colombian Congress on Computational Biology and Bioinformatics, CCBCOL 2013, vol. 232, 2014, pp. 371-377.
http://dx.doi.org/10.1007/978-3-319-01568-2_52
---------- VANCOUVER ----------
Montoya, S., Sánchez, Ó.J., Levin, L., Colciencias Mathematical modeling of lignocellulolytic enzyme production from three species of white rot fungi by solid-state fermentation. Adv. Intell. Sys. Comput. 2014;232:371-377.
http://dx.doi.org/10.1007/978-3-319-01568-2_52