Abstract:
Multiplicity of solutions is proved for an elliptic system with an indefinite Robin boundary condition under an assumption that links the linearisation at 0 and the eigenvalues of the associated linear scalar operator. Our result is based on a precise calculation of the topological degree of a suitable fixed point operator over large and small balls. © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.
Registro:
Documento: |
Artículo
|
Título: | Multiple solutions for an elliptic system with indefinite Robin boundary conditions |
Autor: | Amster, P. |
Filiación: | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina IMAS - CONICET, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
|
Palabras clave: | indefinite Robin condition; multiplicity of solutions; Nonlinear elliptic systems; topological degree |
Año: | 2019
|
Volumen: | 8
|
Número: | 1
|
Página de inicio: | 603
|
Página de fin: | 614
|
DOI: |
http://dx.doi.org/10.1515/anona-2017-0034 |
Título revista: | Advances in Nonlinear Analysis
|
Título revista abreviado: | Adv. Nonlinear Anal.
|
ISSN: | 21919496
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21919496_v8_n1_p603_Amster |
Referencias:
- Amann, H., Dual semigroups and second order linear elliptic boundary value problems (1983) Israel J. Math., 45 (2-3), pp. 225-254
- Amster, P., Kuna, M.P., Multiple solutions for a second order equation with radiation boundary conditions (2017) Electron. J. Qual. Theory Differ. Equ.
- Amster, P., Kuna, M.P., On Exact Multiplicity for A Second Order Equation with Radiation Boundary Conditions
- Amster, P., Kwong, M.K., Rogers, C., A Painlevé II model in two-ion electrodiffusion with radiation boundary conditions (2014) Nonlinear Anal. Real World Appl., 16, pp. 120-131
- Daners, D., Inverse positivity for general Robin problems on Lipschitz domains (2009) Arch. Math. (Basel), 92 (1), pp. 57-69
- Hartman, P., On boundary value problems for systems of ordinary, nonlinear, second order differential equations (1960) Trans. Amer. Math. Soc., 96, pp. 493-509
- Lazer, A.C., Application of a lemma on bilinear forms to a problem in nonlinear oscillations (1972) Proc. Amer. Math. Soc., 33, pp. 89-94
- Smale, S., An infinite dimensional version of Sard's theorem (1965) Amer. J. Math., 87, pp. 861-866
- Umezu, K., On eigenvalue problems with Robin type boundary conditions having indefinite coefficients (2006) Appl. Anal., 85 (11), pp. 1313-1325
Citas:
---------- APA ----------
(2019)
. Multiple solutions for an elliptic system with indefinite Robin boundary conditions. Advances in Nonlinear Analysis, 8(1), 603-614.
http://dx.doi.org/10.1515/anona-2017-0034---------- CHICAGO ----------
Amster, P.
"Multiple solutions for an elliptic system with indefinite Robin boundary conditions"
. Advances in Nonlinear Analysis 8, no. 1
(2019) : 603-614.
http://dx.doi.org/10.1515/anona-2017-0034---------- MLA ----------
Amster, P.
"Multiple solutions for an elliptic system with indefinite Robin boundary conditions"
. Advances in Nonlinear Analysis, vol. 8, no. 1, 2019, pp. 603-614.
http://dx.doi.org/10.1515/anona-2017-0034---------- VANCOUVER ----------
Amster, P. Multiple solutions for an elliptic system with indefinite Robin boundary conditions. Adv. Nonlinear Anal. 2019;8(1):603-614.
http://dx.doi.org/10.1515/anona-2017-0034