Abstract:
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem (Formula Presented) where s Ó (0, 1), n > 2s, is an open bounded domain of Rn with Lipschitz boundary ∂Ω, (-Δ)s is the nonlocal Laplacian operator, 2 < p < 2s and h Ó L2 (Ω). This problem requires the study of the eigenvalue problem related to the fractional Laplace operator, with or without potential. © 2018 Walter de Gruyter GmbH.All Rights Reserved.
Registro:
| Documento: |
Artículo
|
| Título: | Infinitely many solutions for non-local problems with broken symmetry |
| Autor: | Bartolo, R.; De Nápoli, P.L.; Salvatore, A. |
| Filiación: | Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, Bari, 70125, Italy Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
|
| Palabras clave: | Fractional Laplace operator; perturbative method; variational methods |
| Año: | 2018
|
| Volumen: | 7
|
| Número: | 3
|
| Página de inicio: | 353
|
| Página de fin: | 364
|
| DOI: |
http://dx.doi.org/10.1515/anona-2016-0106 |
| Título revista: | Advances in Nonlinear Analysis
|
| Título revista abreviado: | Adv. Nonlinear Anal.
|
| ISSN: | 21919496
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21919496_v7_n3_p353_Bartolo |
Referencias:
- Ambrosetti, A., Arcoya, D., (2011) An Introduction to Nonlinear Functional Analysis and Elliptic Problems, , Birkhäuser, Boston
- Bahri, A., Berestycki, H., A perturbation method in critical point theory and applications (1981) Trans. Amer. Math. Soc., 267, pp. 1-32
- Bahri, A., Lions, P.L., Morse index of some min-max critical points. I: Applications to multiplicity results (1988) Comm. Pure Appl. Math., 41, pp. 1027-1037
- Bogdan, K., Burzy, K., Chen, Z.Q., Censored stable process (2003) Probab. Theory Related Fields, 127, pp. 89-152
- Bolle, P., On the Bolza problem (1999) J. Differential Equations, 152, pp. 274-288
- Bolle, P., Ghoussoub, N., Tehrani, H., The multiplicity of solutions in non-homogeneous boundary value problems (2000) Manuscripta Math., 101, pp. 325-350
- Brändle, C., Colorado, E., De Pablo, A., A concave-convex elliptic problem involving the fractional Laplacian (2013) Proc. Roy. Soc. Edinburgh Sect. A, 143, pp. 39-71
- Brasco, L., Lindgren, E., Parini, E., The fractional Cheeger problem (2014) Interfaces Free Bound., 16 (3), pp. 419-458
- Caffarelli, L.A., Salsa, S., Silvestre, L., Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian (2008) Invent. Math., 171, pp. 425-461
- Caffarelli, L.A., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Comm. Partial Differential Equations, 32, pp. 1245-1260
- Caffarelli, L.A., Vasseur, A., Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation (2010) Ann. of Math. (2), 171, pp. 1903-1930
- Candela, A., Palmieri, G., Salvatore, A., Radial solutions of semilinear elliptic equations with broken symmetry (2006) Topol. Methods Nonlinear Anal., 27, pp. 117-132
- Candela, A., Salvatore, A., Multiplicity results of an elliptic equation with non homogeneous boundary conditions (1998) Topol. Methods Nonlinear Anal., 11, pp. 1-18
- Chen, Z.Q., Song, R., Two sided eigenvalue estimates for subordinate Brownian motion in bounded domains (2005) J. Funct. Anal., 226, pp. 90-113
- Clapp, M., Ding, Y., Hernández-Linares, S., Strongly indefinite functionals with perturbed symmetries and multiple solutions of nonsymmetric elliptic systems (2004) Electron. J. Differential Equations, 2004. , Paper No. 100
- Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136, pp. 521-573
- Dyda, B., Kuznetsov, A., Kwaśnicki, M., (2015) Eigenvalues of the Fractional Laplace Operator in the Unit Ball, , http://arxiv.org/abs/1509.08533, preprint
- Franzina, G., Palatucci, P., Fractional p-eigenvalues (2014) Riv. Mat. Univ. Parma (N.S.), 5, pp. 315-328
- Getoor, R.K., Markov operators and their associated semi-groups (1959) Pacific J. Math., 9, pp. 449-472
- Iannizzotto, A., Squassina, M., Weyl-type laws for fractional p-eigenvalue problems (2014) Asymptot. Anal., 88, pp. 233-245
- Kiselev, A., Nazarov, F., Volberg, A., Global well-posedness for the critical 2D dissipative quasi geostrophic equation (2007) Invent. Math., 167, pp. 445-453
- Li, P., Yau, S.T., On the Schrödinger equation and the eigenvalue problem (1983) Comm. Math. Phys., 88, pp. 309-318
- Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differential Equations, 49, pp. 795-826
- Molica Bisci, G., Sequences of weak solutions for fractional equations (2014) Math. Res. Lett., 21, pp. 241-253
- Molica Bisci, G., Rǎdulescu, V., Servadei, R., Variational methods for nonlocal fractional problems (2016) Encyclopedia Math. Appl., 162. , Cambridge University Press, Cambridge
- Rabinowitz, P.H., Multiple critical points of perturbed symmetric functionals (1982) Trans. Amer. Math. Soc., 272, pp. 753-769
- Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations (1986) CBMS Reg. Conf. Ser. Math., 65. , American Mathematical Society, Providence
- Servadei, R., Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity (2013) Recent Trends in Nonlinear Partial Differential Equations. II: Stationary Problems, Contemp. Math., 595, pp. 317-340. , American Mathematical Society, Providence
- Servadei, R., Valdinoci, E., Variational methods for non-local operators of elliptic type (2013) Discrete Contin. Dyn. Syst., 33, pp. 2105-2137
- Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator (2007) Comm. Pure Appl. Math., 60, pp. 67-112
- Song, R., Vondracek, Z., Potential theory of subordinate killed brownian motion in a domain (2003) Probab. Theory Related Fields, 125, pp. 578-592
- Struwe, M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems (1980) Manuscripta Math., 32, pp. 335-364
- Struwe, M., Infinitely many solutions of superlinear boundary value problems with rotational symmetry (1981) Arch. Math. (Basel), 36, pp. 360-369
- Tanaka, K., Morse indices at critical points related to the symmetric mountain pass theorem and applications (1989) Comm. Partial Differential Equations, 14, pp. 99-128
- Valdinoci, E., From the long jump random walk to the fractional Laplacian (2009) Bol. Soc. Esp. Mat. Apl., 49, pp. 33-44
Citas:
---------- APA ----------
Bartolo, R., De Nápoli, P.L. & Salvatore, A.
(2018)
. Infinitely many solutions for non-local problems with broken symmetry. Advances in Nonlinear Analysis, 7(3), 353-364.
http://dx.doi.org/10.1515/anona-2016-0106---------- CHICAGO ----------
Bartolo, R., De Nápoli, P.L., Salvatore, A.
"Infinitely many solutions for non-local problems with broken symmetry"
. Advances in Nonlinear Analysis 7, no. 3
(2018) : 353-364.
http://dx.doi.org/10.1515/anona-2016-0106---------- MLA ----------
Bartolo, R., De Nápoli, P.L., Salvatore, A.
"Infinitely many solutions for non-local problems with broken symmetry"
. Advances in Nonlinear Analysis, vol. 7, no. 3, 2018, pp. 353-364.
http://dx.doi.org/10.1515/anona-2016-0106---------- VANCOUVER ----------
Bartolo, R., De Nápoli, P.L., Salvatore, A. Infinitely many solutions for non-local problems with broken symmetry. Adv. Nonlinear Anal. 2018;7(3):353-364.
http://dx.doi.org/10.1515/anona-2016-0106