Artículo

Dasso, S.; Mandrini, C.H.; Schmieder, B.; Cremades, H.; Cid, C.; Cerrato, Y.; Saiz, E.; Démoulin, P.; Zhukov, A.N.; Rodriguez, L.; Aran, A.; Menvielle, M.; Poedts, S. "Linking two consecutive nonmerging magnetic clouds with their solar sources" (2009) Journal of Geophysical Research: Space Physics. 114(2)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

On 15 May 2005, a huge interplanetary coronal mass ejection (ICME) was observed near Earth. It triggered one of the most intense geomagnetic storms of solar cycle 23 {Dst peak = -263 nT). This structure has been associated with the two-ribbon flare, filament eruption, and coronal mass ejection originating in active region 10759 (NOAA number). We analyze here the sequence of events, from solar wind measurements (at 1 AU) and back to the Sun, to understand the origin and evolution of this geoeffective ICME. From a detailed observational study of in situ magnetic field observations and plasma parameters in the interplanetary (IP) medium and the use of appropriate models we propose an alternative interpretation of the IP observations, different to those discussed in previous studies. In our view, the IP structure is formed by two extremely close consecutive magnetic clouds (MCs) that preserve their identity during their propagation through the interplanetary medium. Consequently, we identify two solar events in Ha and EUV which occurred in the source region of the MCs. The timing between solar and IP events, as well as the orientation of the MC axes and their associated solar arcades are in good agreement. Additionally, interplanetary radio type II observations allow the tracking of the multiple structures through inner heliosphere and pin down the interaction region to be located midway between the Sun and the Earth. The chain of observations from the photosphere to interplanetary space is in agreement with this scenario. Our analysis allows the detection of the solar sources of the transients and explains the extremely fast changes of the solar wind due to the transport of two attached (though nonmerging) MCs which affect the magnetosphere. © 2009 by the American Geophysical Union.

Registro:

Documento: Artículo
Título:Linking two consecutive nonmerging magnetic clouds with their solar sources
Autor:Dasso, S.; Mandrini, C.H.; Schmieder, B.; Cremades, H.; Cid, C.; Cerrato, Y.; Saiz, E.; Démoulin, P.; Zhukov, A.N.; Rodriguez, L.; Aran, A.; Menvielle, M.; Poedts, S.
Filiación:Instituto de Astronomia y Fisica del Espacio, CONICET-Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Observatoire de Paris, LESIA, UMR8109, CNRS, F-92195 Meudon, France
Facultad Regional Mendoza, Universidad Tecnologica Nacional, M5502AJE Ciudad Mendoza, Argentina
Departamento de Fisica, Universidad de Alcala, E-28871 Alcala de Henares, Spain
Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, B-1180 Brussels, Belgium
Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Marti i Franques 1, E-08028 Barcelona, Spain
Also at Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russian Federation
LATMOS, IPSL, CNRS, 4 Avenue de Neptune, F-94100 Saint Maur, France
LATMOS, IPSL, CNRS, Saint Maur, France
Also at Département des Sciences de Ia Terre, Université Paris-Sud, Orsay, France
Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
Año:2009
Volumen:114
Número:2
DOI: http://dx.doi.org/10.1029/2008JA013102
Título revista:Journal of Geophysical Research: Space Physics
Título revista abreviado:J. Geophys. Res. A. Space Phys.
ISSN:21699402
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699402_v114_n2_p_Dasso

Referencias:

  • Attr111, G., M. S. Nakwacki, L. K. Harra, L. van Driel-Gesztelyi, C. H. Mandrini, S. Dasso, and J. Wang (2006), Using the evolution of coronal dimming regions to probe the global magnetic field topology, Sol. Phys., 238, 117-139, doi:10.1007/sll207-006-0167-5; Bothmer, V., Schwenn, R., Eruptive prominences as sources of magnetic clouds in the solar wind (1994) Space Sci. Rev, 70, pp. 215-220
  • Bothmer, V., Schwenn, R., The structure and origin of magnetic clouds in the solar wind (1998) Ann. Geophys, 16, pp. 1-24
  • Bougeret, J.L., WAVES: The Radio and Plasma Wave Investigation on the Wind spacecraft (1995) Space Sci. Rev, 71, pp. 231-263. , doi:10.1007/BF00751331
  • Brueckner, G.E., The Large Angle Spectroscopic Corona-graph (LASCO) (1995) Sol. Phys, 162, pp. 357-402. , doi:10.I007/BF0O733434
  • Burlaga, L.F., Magnetic clouds and force-free fields with constant alpha (1988) J. Geophys. Res, 93, pp. 7217-7224
  • Burlaga, L. F., and N. F. Ness (1993), Large-scale distant heliospheric magnetic field: Voyager 1 and 2 observations from 1986 through 1989, J. Geophys. Res., 98, 17,451-17,460, doi:10.1029/93JA01475; Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations (1981) J. Geophys. Res, 86, pp. 6673-6684
  • Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H., Reinard, A., Fast ejecta during tlte ascending phase of solar cycle 23: ACE observations, 1998-1999,7 (2001) Geophys. Res, 106, pp. 20,957-20,977. , doi: 10.1029/2000JA000214
  • Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., Zurbuchen, T., Merged interaction regions at 1 AU (2003), A12, 1425, doi:10.1029/2003JA010088; Cane, H.V., Erickson, W.C., Solar type II radio bursts and IP type II events (2005) Astrophys. J, 623, pp. 1180-1194. , doi:10.1086/428820
  • Cane, H.V., Sheeley Jr., N.R., Howard, R.A., Energetic interplanetary shocks, radio emission, and coronal mass ejections (1987) J. Geophys. Res, 92, pp. 9869-9874
  • Chae, J., Denker, C., Spirock, T.J., Wang, H., Goode, P.R., High-resolution Ha observations of proper motion in NOAA 8668: Evidence for filament mass injection by chromospheric reconnection (2000) Sol. Phys, 195, pp. 333-346
  • Cid, C, M. Al Hidalgo, T. Nieves-Chinch111a, J. Sequeiros, and A. F. Vmas (2002), Plasma and magnetic field inside magnetic clouds: A global study, Sol. Phys., 207, 187-198; ClaBen, H.T., Aurass, H., On the association between type II radio bursts and CMEs (2002) Astron. Astrophys, 384, pp. 1098-1106. , 0004-6361:20020092, doi: 10.1051
  • Cremades, H., St. Cyr, O.C., Kaiser, M.L., A tool to improve space weather forecasts: Kilometric radio emissions from Wind/WAVES (2007) Space Weather, 5, pp. S08001. , doi:10.1029/2007SW000314
  • Culhane, J.L., Siscoe, G.L., The Sun Earth workshop: A summary of the outcome (2007) Sol. Phys, 244, pp. 3-12. , doi:10.1007/sll207-007- 9037-z
  • Das, S.,D. Gómez and C. H. Mandrini (2002), Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998, J. Geophys. Res., 707(A5), 1059, doi:10.1029/2000JA000430; Dasso, S., Mandrini, C.H., Démoulin, P., Farrugia, C.J., Magnetic helicity analysis of an interplanetary twisted flux tube (2003) J. Geophys. Res, 108 (A10), p. 1362. , doi:10.1029/2003JA009942
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M., Large scale MHD properties of interplanetary magnetic clouds (2005) Adv. Space Res, 35, pp. 711-724. , doi:10.1016/j.asr.2005.02.096
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Astron. Astrophys, 455, pp. 349-359. , doi:10.1051/0004-6361:20064806
  • Dasso, S., Nakwacki, M., Démoulin, P., Mandrini, C.H., Progressive transformation of a flux rope to an ICME (2007) Sol. Phys, 244, pp. 115-137. , doi:10.1007/sl 1207-007-9034-2
  • Delaboudiniére, J.-P., EIT: Extreme-ultraviolet imaging telescope for the SOHO mission (1995) Sol. Phys, 162, pp. 291-312
  • Démoulin, P., A review of the quantitative links between CMEs and magnetic clouds (2008) Ann. Geophys, 26, pp. 3113-3125
  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H., Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections (2008) Sol. Phys, 250, pp. 347-374. , doi:10.1007/s11207-008-9221-9
  • Deng, Y., Lin, Y., Schmieder, B., Engvold, O., Filament activation and magnetic reconnection (2002) Sol. Phys, 209, pp. 153-170. , doi:10.1023/A: 1020924406991
  • Dryer, M., Smart, D.F., Dynamical models of coronal transients and interplanetary disturbances (1984) Adv. Space Res, 4 (1), pp. 291-301. , doi:10.1016/0273-1177(84)90573-8
  • Farrugia, C., Berdichevsky, D., Evolutionary signatures in complex ejecta and their driven shocks (2004) Ann. Geophys, 22, pp. 3679-3698
  • Farrugia, C. J., et al. (1999), A uniform-twist magnetic flux rope in the solar wind, in Solar Wind Nine, edited by S. Habbal et al., AIP Conf. Proc, 471, pp. 745-748; Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M., Kojima, M., Improvements to the HAF solar wind model for space weather predictions (2001) J. Geophys. Res, 106, pp. 20,985-21,001. , doi: 10.1029/2000JA000220
  • Gibson, S.E., Fan, Y., The partial expulsion of a magnetic flux rope (2006) Astrophys. J, 637, pp. L65-L68. , doi: 10.1086/500452
  • Gibson, S.E., Fan, Y., Török, T., Kliem, B., The evolving sig-moid: Evidence for magnetic flux ropes in the corona before, during, and after CMES (2006) Space Sci. Rev, 124, pp. 131-144. , doi:10.1007/sl 1214-006-9101-2
  • Goldstein, H. (1983), On the field configuration in magnetic clouds, in Solar Wind Five, edited by M. Neugebauer, NASA Conf. Publ, CP-2280, pp. 731-733; Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C., Interplanetary acceleration of coronal mass ejections (2000) Geophys. Res. Lett, 27, pp. 145-148
  • Gopalswamy, N., Lara, A., Kaiser, M.L., Bougeret, J.-L., Near-Sun and near-Earth manifestations of solar eruptions (2001) J. Geophys. Res, 106, pp. 25,261-25,277. , doi:10.1029/2000JA004025
  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L., Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? (2001) Astrophys. J, 548, pp. L91-L94. , doi:10.1086/318939
  • Gopalswamy, N., Yashiro, S., Lara, A., Kaiser, M.L., Thompson, B.J., Gallagher, P.T., Howard, R.A., Large solar energetic particle events of cycle 23: A global view (2003) Geophys. Res. Lett, 50 (12), p. 8015. , doi:10.1029/2002GL016435
  • Gopalswamy, N., Yashiro, S., Krucker, S., Howard, R.A., CME interaction and the intensity of solar energetic particle events (2005) Coronal and Stellar Mass Ejections, 1AU Symp, 226, pp. 367-373. , edited by K. Dere, J. Wang, and Y. Yan, pp, Cambridge Univ. Press, Cambridge, U. K
  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P., Magnetic clouds: A statistical study of magnetic helicity (2005) J. Atmos. Sol. Terr. Phys, 67, pp. 1761-1766. , doi:10.1016/j.jastp.2005.02.026
  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P., Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global magnitudes and orientation (2007) Adv. Space Res, 40, pp. 1881-1890
  • Handy, B.N., The transition region and coronal explorer (1999) Sol. Phys, 187, pp. 229-260
  • Harrison, R.A., First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun Earth line (2008) Sol. Phys, 247, pp. 171-193. , doi: 10.1007/s11207-007-9083-6
  • Hidalgo, M. A. (2003), A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium, J. Geophys. Res., 108{A1), 1320, doi:10.1029/2002JA009818; Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J., A non-force-free approach to the topology of magnetic clouds in the solar wind (2002) J. Geophys. Res, 107 (A1), p. 1002. , doi:10.1029/2001JA900100
  • Hidalgo, M. A., T. Nieves-Chinch111a, and C. Cid (2002b), Elliptical cross-section model for the magnetic topology of magnetic clouds, Geophys. Res. Lett., 29(13), 1637, doi: 10.1029/2001GL013875; Hoang, S., C. Lacombe, R. J. MacDowall, and G. Thejappa (2007), Radio tracking of the interplanetary coronal mass ejection driven shock crossed by Ulysses on 10 May 2001, J- Geophys. Res., 112, A09102, doi:10.1029/2006JA011906; Hu, Q., Sonnerup, B.U.O., Reconstruction of magnetic flux ropes in the solar wind (2001) Geophys. Res. Lett, 28, pp. 467-470. , doi:10.1029/2000GL012232
  • Hu, Q., Sonnerup, B.U.O., Reconstruction of magnetic clouds in the solar wind: Orientations and configurations (2002) J. Geophys. Res, 707 (A7), p. 1142. , doi:10.1029/2001JA000293
  • Hudson, H.S., Cliver, E.W., Observing coronal mass ejections without coronagraphs (2001) J. Geophys. Res, 106, pp. 25,199-25,214
  • Kahler, S.W., Hudson, H.S., Origin and development of transient coronal holes (2001) J. Geophys. Res, 106, pp. 29,239-29,248. , doi:10.1029/2001JA000127
  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L., Tracing the electron density from the corona to 1 AU (1998) Sol. Phys, 183, pp. 165-180
  • Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K., Consequences of the force-free model of magnetic clouds for their heliospheric evolution (2007) J. Geophys. Res, 112, pp. A06113. , doi:10.1029/2006JA011940
  • Lepping, R.P., Burlaga, L.F., Jones, J.A., Magnetic field structure of interplanetary magnetic clouds at 1 AU (1990) J. Geophys. Res, 95, pp. 11,957-11,965
  • Liu, C, J. Lee, V. Yurchyshyn, N. Deng, K.-S. Cho, M. Karlicky, and H. Wang (2007), The eruption from a sigmoidal solar active region on 2005 May 13, Astrophys. J., 669, 1372-1381, doi: 10.1086/521644; Liu, R., Gilbert, H.R., Alexander, D., Su, Y., The effect of magnetic reconnection and writhing in a partial filament eruption (2008) Astrophys. J, 680, pp. 1508-1515. , doi:10.1086/587482
  • Liu, Y., Richardson, J.D., Belcher, J.W., A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU (2005) Planet. Space Sci, 53, pp. 3-17. , doi:10.1016/j.pss.2004.09.023
  • Liu, Y., Richardson, J.D., Belcher, J.W., Kasper, J.C., Elliott, H.A., Thermodynamic structure of collision-dominated expanding plasma: Heating of interplanetary coronal mass ejections (2006) J. Geophys. Res, 111, pp. A01102. , doi:10.1029/2005JA011329
  • Liu, Y, J. D. Richardson, J. W. Belcher, C. Wang, Q. Hu, and J. C. Kasper (2006b), Constraints on the global structure of magnetic clouds: Transverse size and curvature, J. Geophys. Res., 111, A12S03, doi:10.1029/ 2006JA011890; Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B., Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? (2008) Astrophys. J, 677, pp. L133-L136. , doi: 10.1086/587839
  • Longcope, D, C. Beveridge, J. Qiu, B. Ravindra, G. Barnes, and S. Dasso (2007), Modeling and measuring the flux reconnected and ejected by the two-ribbon flare/CME event on 7 November 2004, Sol. Phys., 244, 45-73, doi: 10.1007/s 11207-007-0330-7; Lopez, R.E., Solar cycle invariance in solar wind proton temperature relationships (1987) J. Geophys. Res, 92, pp. 11,189-11,194
  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., The counterkink rotation of a non-Hale active region (2000) Astrophys. J, 544, pp. 540-549. , doi:10.1086/317180
  • López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L., Magnetic twist and writhe of active regions: On the origin of deformed flux tubes (2003) Astron. Astrophys, 397, pp. 305-318. , doi:10.1051/0004-6361:20021487
  • Lundquist, S., Magnetohydrostatic fields (1950) Ark. Fys, 2, pp. 361-365
  • Luoni, M.L., Mandrini, C.H., Dasso, S., van Driel-Gesztelyi, L., Démoulin, P., Tracing magnetic helicity from the solar corona to the interplanetary space (2005) J. Atmos. Sol. Terr. Phys, 67, pp. 1734-1743. , doi:10.1016/j.jastp.2005.07.003
  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K., Internal structure of magnetic clouds: Plasma and composition (2003) J. Geophys. Res, 108 (A6), p. 1239. , doi:10.1029/2002JA009591
  • Maltagliati, L., Falchi, A., Teriaca, L., Rhessi images and spectra of two small flares (2006) Sol. Phys, 235, pp. 125-146. , doi:10.1007/sll207-006-1977-l
  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C., Interplanetary flux rope ejected from an X-ray bright point: The smallest magnetic cloud source-region ever observed (2005) Astron. Astrophys, 434, pp. 725-740. , doi:10.1051/0004-6361:20041079
  • Manoharan, P.K., Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scint111ation images (2006) Sol. Phys, 235, pp. 345-368. , doi: 10.1007/s11207-006-0100-y
  • Martin, S.F., Ramsey, H.E., Early recognition of major solar flares in H-alpha (1972) Solar Activity Observations and Predictions, pp. 371-387. , edited by P. S. Mclntosh and M. Dryer, pp, MIT Press, Cambridge, Mass
  • Marubashi, K., Interplanetary magnetic flux ropes and solar filaments (1997) Coronal Mass Ejections, Geophys. Monogr. Ser, 99, pp. 147-156. , edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp, AGU, Washington, D. C
  • McComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Ph111ips, P. Riley, and J. W. Griffee (1998), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 86, 563-612, doi:10.1023/A:1005040232597; Moore, R.L., Sterling, A.C., Hudson, H.S., Leraen, J.R., Onset of the magnetic explosion in solar flares and coronal mass ejections (2001) Astrophys. J, 552, pp. 833-848. , doi:10.1086/320559
  • Nakwacki, M. S., S. Dasso, C. H. Mandrini, and P. Démoulin (2005), Helicity analysis for expanding magnetic clouds: A case study, in Connecting Sun and Heliosphere: Proceedings of Solar Wind 11/SOHO 16, edited by B. Fleck and T. H. Zurbuchen, Eur. Space Agency Spec. Publ, ESA-SP 592, pp. 629-632; Nakwacki, M.S., Dasso, S., Mandrini, C.H., Démoulin, P., Analysis of large scale MHD quantities in expanding magnetic clouds (2008) J. Atmos. Sol. Terr. Phys, 70, pp. 1318-1326
  • Pick, M. (1999), Radio and coronagraph observations: Shocks, coronal mass ejections and particle acceleration, in Solar Physics With Radio Observations: Proceedings of the Nobeyama Symposium, edited by T. S. Bastian, N. Gopalswamy, and K. Shibasaki, Rep. 479, pp. 187-198, Nobeyama Radio Obs., Minamimaki, Japan; Pizzo, V.J., Global, quasi-steady dynamics of the distant solar wind: 1. Origin of north-south flows in the outer heliosphere (1994) J. Geophys. Res, 99, pp. 4173-4183
  • Reiner, M.J., Kaiser, M.L., Fainberg, J., Stone, R.G., A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks (1998) J. Geophys. Res, 103, pp. 29,651-29,664. , doi:10.1029/98JA02614
  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L., Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations (2007) Astrophys. J, 663, pp. 1369-1385. , doi:l0.1086/518683
  • Riley, P., Fitting flux ropes to a global MHD solution: A comparison of techniques (2004) J. Atmos. Sol. Terr. Phys, 66, pp. 1321-1331. , doi:10.1016/j.jastp.2004.03.019
  • Rodriguez, L., Magnetic clouds seen at different locations in the heliosphere (2008) Ann. Geophys, 26, pp. 213-229
  • Rust, D.M., Anderson, B.J., Andrews, M.D., Acuñla, M.H., Russell, C.T., Schuck, P.W., Mulligan, T., Comparison of interplanetary disturbances at the NEAR spacecraft with coronal mass ejections at the Sun (2005) Astrophys. J, 621, pp. 524-536. , doi:l0.1086/427401
  • Ruzmaikin, A., Martin, S., Hu, Q., Signs of magnetic helicity in interplanetary coronal mass ejections and associated prominences: Case study (2003) Geophys. Res, 108 (A2), p. 1096. , doi:10.1029/2002JA009588
  • Saito, K., Poland, A.I., Munro, R.H., A study of the background corona near solar minimum (1977) Sol. Phys, 55, pp. 121-134
  • Scherrer, P.H., The solar osc111ations investigation: Michelson Doppler Imager (1995) Sol. Phys, 162, pp. 129-188
  • Schmieder, B., Aulanier, G., Mein, P., López Ariste, A., Evolving photospheric flux concentrations and filament dynamic changes (2006) Sol. Phys, 238, pp. 245-259. , doi:10.1007/sll207-006-0252-9
  • Smith, C.W., L'Heureux, J., Ness, N.F., Acuna, M.H., Burlaga, L.F., Scheifele, J., The ACE magnetic fields experiment (1998) Space Sci. Rev, 86, pp. 613-632. , doi:10.1023/A:1005092216668
  • Smith, Z, and M. Dryer (1995), The interplanetary shock propagation model: A model for predicting solar-flare-caused geomagnetic sudden impulses based on the 2 1/2 D MHD numerical simulation results from the interplanetary global model (2D IGM), Tech. Memo. ERL/SEL-89, NOAA, Washington, D. C; Sonnerup, B. U. O., and L. J. Cah111 Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171-183; Tang, F., The two types of flare-associated filament eruptions (1986) Sol. Phys, 105, pp. 399-412
  • Tripathi, D., Bothmer, V., Cremades, H., The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions (2004) Astron. Astrophys, 422, pp. 337-349. , doi:10.1051/0004-6361:20035815
  • Vandas, M., Romashets, E.P., Magnetic field in an elliptic flux rope- A generalization of the lundquist solution, in solar Variability: From Core to Outer Frontiers (2002) Eur. Space Agency Spec. Publ, ESA-SP 506, pp. 217-220. , edited by A. Wilson
  • Vandas, M., Romashets, E.P., Force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution (2003) Astron. Astrophys, 398, pp. 801-807
  • Vourlidas, A. (2006), Detections of CME-driven shocks with LASCO, in Proceedings of SOHO-17: 10 Years ofSOHO and Beyond, edited by H. Lacoste, Eur. Space Agency Spec. Publ, ESA-SP 617, pp. 23.1-23.4; Vourlidas, A., Wu, S.T., Wang, A.H., Subramanian, P., Howard, R.A., Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images (2003) Astrophys. J, 598, pp. 1392-1402. , doi:10.1086/379098
  • Wang, A.H., Wu, S.T., Gopalswamy, N., Magnetohydrody-namic analysis of January 20, 2001, CME-CME interaction event (2005) Geophys. Monogr. Ser, 156, pp. 185-195. , Particle Acceleration in Astrophysical Plasmas: Geospace and Beyond, edited by D. Gallagher et al, pp, AGU, Washington, D. C
  • Wang, Y.M., Wang, S., Ye, P.Z., Multiple magnetic clouds in interplanetary space (2002) Sol. Phys, 211, pp. 333-344
  • Wang, Y.M., Ye, P.Z., Wang, S., Multiple magnetic clouds: Several examples during March-April 2001 (2003) J. Geophys. Res, , J0SA10, 1370, doi:10.1029/2003JA009850
  • Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M., The origin and development of the May 1997 magnetic cloud (2000) J. Geophys. Res, 105, pp. 27-251. , 27,260, doi: 10.1029/2000JA000021
  • Wood, P., and P. Martens (2003), Measurements of flux cancellation during filament formation, Sol. Phys., 218, 123-135, doi:10.1023/B:SOLA. 0000013027.52104.c6; Wu, S.T., Guo, W.P., Michels, D.J., Burlaga, L.F., MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun-Earth connection event (1999) J. Geophys. Res, 104, pp. 14,789-14,802. , doi: 10.1029/1999JA900099
  • Wu, S.T., Zhang, T.X., Dryer, M., Feng, X.S., Tan, A., The role of magnetic reconnection in CME acceleration (2005) Space Sci. Rev, 121, pp. 33-47. , doi:10.1007/sll214-006-6159-9
  • Xie, H., Gopalswamy, N., Manoharan, P.K., Lara, A., Yashiro, S., Lepri, S., Long-lived geomagnetic storms and coronal mass ejections (2006) J. Geophys. Res, 111, pp. A01103. , doi:10.1029/2005JA011287
  • Xiong, M., Zheng, H., Wu, S.T., Wang, Y., Wang, S., Magneto-hydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness (2007) J. Geophys. Res, 112, p. 103. , All, doi:10.1029/2007JA012320
  • Yashiro, S., N. Gopalswamy, S. Akiyama, G. Michalek, and R. A. Howard (2005), Visibility of coronal mass ejections as a function of flare location and intensity, J. Geophys. Res., 110, A12S05,doi:10.1029/2005JA01151; Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y., Orientation of the magnetic fields in interplanetary flux ropes and solar filaments (2001) Astrophys. J, 563, pp. 381-388
  • Yurchyshyn, V., Hu, Q., Abramenko, V., Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta (2005) Space Weather, 3 (C02), pp. S08. , doi:10.1029/2004SW000124
  • Yurchyshyn, V., Liu, C., Abramenko, V., Krall, J., The May 13, 2005 eruption: Observations, data analysis and interpretation (2006) Sol. Phys, 239, pp. 317-335. , doi:10.1007/sll207-006-0177-3
  • Zhang, J., J. Wang, Y. Deng, and D. Wu (2001), Magnetic flux cancellation associated with the major solar event on 2000 July 14, Astrophys. J., 548, L99-L102, doi: 10.1086/318934

Citas:

---------- APA ----------
Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E.,..., Poedts, S. (2009) . Linking two consecutive nonmerging magnetic clouds with their solar sources. Journal of Geophysical Research: Space Physics, 114(2).
http://dx.doi.org/10.1029/2008JA013102
---------- CHICAGO ----------
Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., et al. "Linking two consecutive nonmerging magnetic clouds with their solar sources" . Journal of Geophysical Research: Space Physics 114, no. 2 (2009).
http://dx.doi.org/10.1029/2008JA013102
---------- MLA ----------
Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., et al. "Linking two consecutive nonmerging magnetic clouds with their solar sources" . Journal of Geophysical Research: Space Physics, vol. 114, no. 2, 2009.
http://dx.doi.org/10.1029/2008JA013102
---------- VANCOUVER ----------
Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., et al. Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. A. Space Phys. 2009;114(2).
http://dx.doi.org/10.1029/2008JA013102