Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Interplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 < 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.

Registro:

Documento: Artículo
Título:A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
Autor:Dasso, S.; Gratton, F.T.; Farrugia, C.J.
Filiación:Institute de Física Del Plasma, Departamento de Física, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científlcas y Técnicas, Buenos Aires, Argentina
Institute for the Study of Earth, Oceans, and Space, Space Science Center, University of New Hampshire, Durham, NH, United States
Instituto de Astronomía y Física Del Espacio, Departamento de Física, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Cientifícas y Técnicas, Buenos Aires, Argentina
Institute de Astronomía y Fisica Del Espacio (IAFE), CC 67 Sue. 28, 1428 Buenos Aires, Argentina
Institute for the Study of Earth, Oceans, and Space, Space Science Center, Morse Hall, Durham, NH 03824, United States
Institute de Física Del Plasma, Departamento de Física FCEyN/UBA-CONICET, Ciudad Universitaria, Pab.l, Buenos Aires 1428, Argentina
Palabras clave:Interplanetary coronal mass ejections; Ion-cyclotron instability; Kinetic instabilities; Magnetic clouds; Plasma waves; Thermal anisotropy
Año:2003
Volumen:108
Número:A4
DOI: http://dx.doi.org/10.1029/2002JA009558
Título revista:Journal of Geophysical Research: Space Physics
Título revista abreviado:J. Geophys. Res. A. Space Phys.
ISSN:21699402
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699402_v108_nA4_p_Dasso

Referencias:

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Gosling, J.T., Zwickl, R.D., Bi-directional streaming of solar wind electrons >80 eV: ISEE evidence for a closed field structure within the driver gas of an interplanetary shock (1981) Geophys. Res. Lett, 8, pp. 173-176
  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Helium abundance enhancements in the solar wind (1982) J. Geophys. Res, 87, pp. 7370-7378
  • Burlaga, L.F., (1995) Interplanetary Magnetohydrodynamics, , 248 pp, Oxford Univ. Press, New York
  • Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations (1981) J. Geophys. Res, 86, pp. 6673-6684
  • Burlaga, L.G., A magnetic cloud containing prominence material: January 1997, J (1998) Geophys. Res, 103, pp. 277-285
  • Dasso, S., F. T. Gratton, and C. J. Farrugia, The influence of proton thermal properties on electromagnetic ion cyclotron wave activity in solar ejecta, in Solar Hind Nine, edited by S. Habbal et al., AIP Conf. Proc, 471, 669-672, 1999; Dasso, S., F. T. Gratton, C. J. Farrugia, and G. Gnavi, The influence of electron thermal properties on the instabilities of right hand polarized cyclotron waves in coronal mass ejections, in The Solar Wind-Magnetosphere System 3, edited by H. K. Bternat, C. J. Farrugia, and D. F. Vogl, pp. 71-80, Austrian Acad, of Scii Press, Vienna, 2000; Dasso, S., Farrugia, C.J., Gratton, F.T., Lepping, R.P., Ogilvie, K.W., Fitzenreiter, R., Waves in the proton cyclotron frequency range in the coronal mass ejection observed by Wind on August 7-8, 1996: Theory and data (2001) Adv. Space Res, 28 (5), pp. 747-752
  • Dasso, S., Gratton, F.T., Farrugia, C.J., The role of alpha particles in the emission of plasma waves inside solar ejecta (2002) Braz. J. Phys., 32(2B), pp. 632-635
  • Daughton, W., and P. S. Gary, Electromagnetic proton/proton instabilities in the solar wind, J. Geophys. Res., 103, 20,613 -20,620, 1998; Farrugia, C.J., Gratton, F.G., Gnavi, G., Ogilvie, K.W., On the possible excitation of electromagnetic ion cyclotron waves in solar ejecta (1998) J. Geophys. Res, 103, pp. 6543-6550
  • Farrugia, C.J., Geoeffectiveness of three Wind magnetic clouds: A comparative study (1998) J. Geophys. Res, 103, pp. 17,261-17,278
  • Galvin, A.B., Minor ion composition in CME-Related Solar Wind (1997) Geophys. Monogr. Ser, 99, pp. 253-260. , Coronal Mass Ejections, edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp, AGU, Washington, D. C
  • Galvin, A.B., Ipavich, F.M., Gloeckler, G., Hovcstadt, D., Bame, S.J., Klecker, B., Scholer, M., Tsurutani, B.T., Solar wind charges states preceding a driver plasma (1987) J. Geophys. Res, 92, pp. 12,069-12,081
  • Gary, S.P., (1993) Theory of Plasma Microinstabililies, , Cambridge Univ. Press, New York
  • Gosling, J.T., Coronal mass ejections and magnetic flux ropes in interplanetary space (1990) Geophys. Monogr. Ser, 58, pp. 343-364. , Physics of Magnetic Flux Ropes, edited by C. T. Russell, E. R. Priest, and L. C. Lee, pp, AGU, Washington, D. C
  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C., Zwickl, R.D., Interplanetary ions during an energetic storm particles event: The distribution function from solar wind thermal energies to 1.6 MeV (1981) J. Geophys. Res, 86, pp. 547-554
  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., Bidirectional solar wind electron heat events (1987) J. Geophys. Res, 92, pp. 8519-8535
  • Gratton, F. T., S. Dasso, and C. J. Farrugia, Electron and alpha particle influence on the excitation of right hand polarized electromagnetic ion cyclotron waves in solar ejecta, in Proceedings of 1998 International Congress on Plasma Physics & 25th European Physical Society Conference on Controlled Fusion and Plasma Physics, Praha, edited by P. Pavlo, ECA, Eur. Phys. Soc., 22C, 1122-1125, 1998; Kennel, C.F., Scarf, F.L., Thermal anisotropics and electromagnetic instabilities in the solar wind (1968) J. Geophys. Res, 73, pp. 6149-6165
  • Marsch, E., Kinetic physics of the solar wind plasma (1991) Physics of the Inner Heliosphere II, pp. 45-133. , edited by R. Schwenn and E. Marsch, pp, Springer-Verlag, New York
  • Marsden, R.G., Sanderson, T.R., Tranquille, C., Wenzel, K.-P., Smith, E.J., ISEE 3 observations of low-energy proton bidirectional events and their relation to isolated interplanetary structures (1987) J. Geophys. Res, 92, pp. 11,009-11,019
  • Montgomery, M.D., Asbridge, J.R., Bame, S.J., Feldman, W.C., Solar wind electron temperature depressions following some interplanetary shock waves: Evidence for magnetic merging? (1974) J. Geophys. Res, 79, p. 3103
  • Neugebauer, M., Goldstein, R., Particle and field signatures of coronal mass ejections in the solar wind (1997) Geophys. Monogr. Ser, 99. , Coronal Mass Ejections, edited by N. Crooker, J. A. Joselyn, and J. Feyn-man, 245 pp, AGU, Washington, D. C
  • Osherovich, V., Burlaga, L.F., Magnetic clouds (1997) Geophys. Monogr. Ser, 99, pp. 157-168. , Coronal Mass Ejections, edited by N. Crooker, J. A. Joselyn, and J. Feynman, pp, AGU, Washington, D. C
  • Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Fainberg, J., Stone, R.G., Polytropic relationship in interplanetary magnetic clouds (1993) J. Geophys. Res, 98, pp. 15,331-15,342
  • Pillipp, W.G., Miggenrieder, H., Montgomery, M.D., Muhlhauser, K.H., Rosenbauer, H., Schwenn, R., Unusual electron distribution functions in the solar wind derived from the Helios Plasma Experiment: Double-Strahl distributions and distributions with an extremely anisotropic core (1987) J. Geophys. Res, 92, pp. 1093-1101
  • Richardson, I. G., and H. V. Cane, Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta, J. Geophys. Res., 100, 23,397-23,412, 1995; Richardson, I.G., Farrugia, C.J., Cane, H.V., A statistical study of the behavior of the electron temperature in ejecta (1997) J. Geophys. Res, 102, pp. 4691-4700
  • Schwenn, R., Large-scale structure of the interplanetary medium (1990) Physics of the Inner Heliosphere I, pp. 99-181. , edited by R. Schwenn and E. Marsch, pp, Springer-Verlag, New York
  • Stix, T.H., (1992) Waves in Plasmas, , AIM, New York
  • Summers, D., Thome, R.M., The modified plasma dispersion function (1991) Phys. Fluids, B3 (8), pp. 1835-1847
  • Summers, D., Thorne, R.M., A new tool for analyzing microinstabil-ities in space plasmas modeled by a generalized Lorentzian (Kappa) distribution (1992) J. Geophys. Res, 97, pp. 16,827-16,832
  • Treumann, R. A., and W. Baumjohann, Advanced Space Plasma Physics, Imperial Coll. Press, London, 1977; Vbitenko, Y., Goossens, M., Excitation of high-frequency AlfVén waves by plasma outflows from coronal reconnection events (2002) Sol. Phys, 206, pp. 285-313
  • Xue, S., Thorne, R.M., Electromagnetic ion-cyclotron instability in space plasmas (1993) J. Geophys. Res, 98, pp. 17,475-17,484
  • Zwickl, R.D., Asbridge, J.R., Bame, S.J., Feldman, W.C., Gosling, J.T., Smith, E.J., Plasma properties of driver gas following interplanetary shocks observed by ISEE 3 (1983) Solar Wind Five, NASA Conf. Pubi, CP, 2250, pp. 711-717

Citas:

---------- APA ----------
Dasso, S., Gratton, F.T. & Farrugia, C.J. (2003) . A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections. Journal of Geophysical Research: Space Physics, 108(A4).
http://dx.doi.org/10.1029/2002JA009558
---------- CHICAGO ----------
Dasso, S., Gratton, F.T., Farrugia, C.J. "A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections" . Journal of Geophysical Research: Space Physics 108, no. A4 (2003).
http://dx.doi.org/10.1029/2002JA009558
---------- MLA ----------
Dasso, S., Gratton, F.T., Farrugia, C.J. "A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections" . Journal of Geophysical Research: Space Physics, vol. 108, no. A4, 2003.
http://dx.doi.org/10.1029/2002JA009558
---------- VANCOUVER ----------
Dasso, S., Gratton, F.T., Farrugia, C.J. A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections. J. Geophys. Res. A. Space Phys. 2003;108(A4).
http://dx.doi.org/10.1029/2002JA009558