Artículo

Janvier, M.; Winslow, R.M.; Good, S.; Bonhomme, E.; Démoulin, P.; Dasso, S.; Möstl, C.; Lugaz, N.; Amerstorfer, T.; Soubrié, E.; Boakes, P.D. "Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses" (2019) Journal of Geophysical Research: Space Physics. 124(2):812-836
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3–1 AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with heliospheric distance. Using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER), Venus Express and ACE spacecraft, we analyze with the superposed epoch technique the profiles of ICME substructures, namely, the sheath and the magnetic ejecta. We determine that the median magnetic field magnitude in the sheath correlates well with ICME speeds at 1 AU, and we use this proxy to order the ICMEs at all spacecraft. We then investigate the typical ICME profiles for three categories equivalent to slow, intermediate, and fast ICMEs. Contrary to fast ICMEs, slow ICMEs have a weaker solar wind field at the front and a more symmetric magnetic field profile. We find the asymmetry to be less pronounced at Earth than at Mercury, indicating a relaxation taking place as ICMEs propagate. We also find that the magnetic field intensities in the wake region of the ICMEs do not go back to the pre-ICME solar wind intensities, suggesting that the effects of ICMEs on the ambient solar wind last longer than the duration of the transient event. Such results provide an indication of physical processes that need to be reproduced by numerical simulations of ICME propagation. The samples studied here will be greatly improved by future missions dedicated to the exploration of the inner heliosphere, such as Parker Solar Probe and Solar Orbiter. ©2019. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses
Autor:Janvier, M.; Winslow, R.M.; Good, S.; Bonhomme, E.; Démoulin, P.; Dasso, S.; Möstl, C.; Lugaz, N.; Amerstorfer, T.; Soubrié, E.; Boakes, P.D.
Filiación:Institut d'Astrophysique Spatiale, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
Institute for the Study of Earth, Ocean, and Space, University of New Hampshire, Durham, NH, United States
Department of Physics, University of Helsinki, Helsinki, Finland
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, Meudon, France
Instituto de Astronomía y Física del Espacio, UBA-CONICET, Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Palabras clave:coronal mass ejections; data analysis; heliospheric physics
Año:2019
Volumen:124
Número:2
Página de inicio:812
Página de fin:836
DOI: http://dx.doi.org/10.1029/2018JA025949
Título revista:Journal of Geophysical Research: Space Physics
Título revista abreviado:J. Geophys. Res. Space Phys.
ISSN:21699380
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699380_v124_n2_p812_Janvier

Referencias:

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N., Möstl, C., Marubashi, K., Hidalgo, M., Roussev, I.I., Farrugia, C.J., Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections (2013) Solar Physics, 284, pp. 129-150. , https://doi.org/10.1007/s11207-013-0244-5
  • Anderson, B.J., Acuña, M.H., Lohr, D.A., Scheifele, J., Raval, A., Korth, H., Slavin, J.A., The magnetometer instrument on MESSENGER (2007) Space Science Reviews, 131, pp. 417-450. , https://doi.org/10.1007/s11214-007-9246-7
  • Andrews, G.B., Zurbuchen, T.H., Mauk, B.H., Malcom, H., Fisk, L.A., Gloeckler, G., Ho, G.C., Raines, J.M., The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft (2007) Space Science Reviews, 131, pp. 523-556. , https://doi.org/10.1007/s11214-007-9272-5
  • Bothmer, V., Schwenn, R., The structure and origin of magnetic clouds in the solar wind (1998) Annales Geophysicae, 16, pp. 1-24
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock—Voyager, Helios, and IMP 8 observations (1981) Journal of Geophysical Research, 86, pp. 6673-6684. , https://doi.org/10.1029/JA086iA08p06673
  • Cane, H.V., Richardson, I.G., Cyr, O.C.S., Coronal mass ejections, interplanetary ejecta and geomagnetic storms (2000) Geophysical Research Letters, 27, pp. 3591-3594. , https://doi.org/10.1029/2000GL000111
  • Chree, C., Some phenomena of sunspots and of terrestrial magnetism. Part II (1914) Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 213, pp. 245-277. , http://www.jstor.org/stable/91066, Retrieved from
  • Dasso, S., Magnetic helicity content in solar wind flux ropes (2009) Iau symposium, 257, pp. 379-389. , https://doi.org/10.1017/S1743921309029603, N. Gopalswamy, &, D. F. Webb, (Eds.),, Cambridge, Cambridge University Press
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Astronomy & Astrophysics, 455, pp. 349-359. , https://doi.org/10.1051/0004-6361:20064806
  • Démoulin, P., Dasso, S., Causes and consequences of magnetic cloud expansion (2009) Astronomy & Astrophysics, 498, pp. 551-566. , https://doi.org/10.1051/0004-6361/200810971
  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H., Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections (2008) Solar Physics, 250, pp. 347-374. , https://doi.org/10.1007/s11207-008-9221-9
  • Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Magnetic clouds and the quiet-storm effect at Earth (1997) Magnetic Storms, pp. 91-106. , https://doi.org/10.1029/GM098p0091, Washington, DC, United States, American Geophysical Union (AGU)
  • Gershman, D.J., Zurbuchen, T.H., Fisk, L.A., Gilbert, J.A., Raines, J.M., Anderson, B.J., Smith, C.W., Solomon, S.C., Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER (2012) Journal of Geophysical Research, 117, p. A00M02. , https://doi.org/10.1029/2012JA017829
  • Good, S.W., Forsyth, R.J., Interplanetary coronal mass ejections observed by MESSENGER and Venus Express (2016) Solar Physics, 291, pp. 239-263. , https://doi.org/10.1007/s11207-015-0828-3
  • Good, S.W., Forsyth, R.J., Eastwood, J.P., Möstl, C., Correlation of ICME magnetic fields at radially aligned spacecraft (2018) Solar Physics, 293 (3), p. 52. , https://doi.org/10.1007/s11207-018-1264-y
  • Good, S.W., Forsyth, R.J., Raines, J.M., Gershman, D.J., Slavin, J.A., Zurbuchen, T.H., Radial evolution of a magnetic cloud: MESSENGER, STEREO, and Venus Express observations (2015) The Astrophysical Journal, 807, p. 177. , https://doi.org/10.1088/0004-637X/807/2/177
  • Gosling, J.T., Coronal mass ejections and magnetic flux ropes in interplanetary space (1990) Physics of magnetic flux ropes (A92-31201 12-75), 58, pp. 343-364. , Washington, DC, American Geophysical Union
  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L., Expansion of magnetic clouds in the outer heliosphere (2012) Astronomy & Astrophysics, 543, p. A107. , https://doi.org/10.1051/0004-6361/201118748
  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E., Global and local expansion of magnetic clouds in the inner heliosphere (2010) Astronomy & Astrophysics, 509 (A39), p. 10. , https://doi.org/10.1051/0004-6361/200912375
  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M., Properties of interplanetary coronal mass ejections at one AU during 1995 2004 (2006) Solar Physics, 239, pp. 393-436. , https://doi.org/10.1007/s11207-006-0133-2
  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I., Coronal mass ejections and their sheath regions in interplanetary space (2017) Living Reviews in Solar Physics, 14 (1), p. 5. , https://doi.org/10.1007/s41116-017-0009-6
  • Klein, L.W., Burlaga, L.F., Interplanetary magnetic clouds at 1 AU (1982) Journal of Geophysical Research, 87, pp. 613-624. , https://doi.org/10.1029/JA087iA02p00613
  • Kumar, A., Rust, D.M., Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes (1996) Journal of Geophysical Research, 101, pp. 15,677-15,684. , https://doi.org/10.1029/96JA00544
  • Lee, C.O., Hara, T., Halekas, J.S., Thiemann, E., Chamberlin, P., Eparvier, F., Lillis, R.J., Jakosky, B.M., MAVEN observations of the solar cycle 24 space weather conditions at Mars (2017) Journal of Geophysical Research: Space Physics, 122, pp. 2768-2794. , https://doi.org/10.1002/2016JA023495
  • Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K., Consequences of the force-free model of magnetic clouds for their heliospheric evolution (2007) Journal of Geophysical Research, 112, p. A06113. , https://doi.org/10.1029/2006JA011940
  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J., A summary of WIND magnetic clouds for years 1995–2003: Model-fitted parameters, associated errors and classifications (2006) Annales Geophysicae, 24 (1), pp. 215-245. , https://doi.org/10.5194/angeo-24-215-2006
  • Lindsay, G.M., Russell, C.T., Luhmann, J.G., Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness (1995) Journal of Geophysical Research, 100, pp. 16,999-17,014. , https://doi.org/10.1029/95JA00525
  • Liu, Y., Manchester, W.B., Richardson, J.D., Luhmann, J.G., Lin, R.P., Bale, S.D., Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness (2008) Journal of Geophysical Research, 113, p. A00B03. , https://doi.org/10.1029/2007JA012996
  • Liu, Y., Richardson, J.D., Belcher, J.W., A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU (2005) Planetary and Space Science, 53, pp. 3-17. , https://doi.org/10.1016/j.pss.2004.09.023
  • Manchester, W.B.I.V., Gombosi, T.I., De Zeeuw, D.L., Sokolov, I.V., Roussev, I.I., Powell, K.G., Kóta, J., Zurbuchen, T.H., Coronal mass ejection shock and sheath structures relevant to particle acceleration (2005) The Astrophysical Journal, 622, pp. 1225-1239. , https://doi.org/10.1086/427768
  • Masías-Meza, J.J., Dasso, S., Démoulin, P., Rodriguez, L., Janvier, M., Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic Cosmic Rays (2016) Astronomy & Astrophysics, 592, p. A118. , https://doi.org/10.1051/0004-6361/201628571
  • McComas, D.J., Bame, S.J., Barker, P.L., Delapp, D.M., Feldman, W.C., Gosling, J.T., Santiago, E., Griffee, J.W., An unusual coronal mass ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) results from the Advanced Composition Explorer (1998) Geophysical Research Letters, 25, pp. 4289-4292. , https://doi.org/10.1029/1998GL900174
  • Möstl, C., Amla, K., Hall, J.R., Liewer, P.C., De Jong, E.M., Colaninno, R.C., Veronig, A.M., Galvin, A.B., Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU (2014) The Astrophysical Journal, 787, p. 119. , https://doi.org/10.1088/0004-637X/787/2/119
  • Möstl, C., Isavnin, A., Boakes, P.D., Kilpua, E.K.J., Davies, J.A., Harrison, R.A., Barnes, D., Zhang, T.L., Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory (2017) Space Weather, 15, pp. 955-970. , https://doi.org/10.1002/2017SW001614
  • Nakwacki, M., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M., Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU (2011) Astronomy & Astrophysics, 535, p. A52. , https://doi.org/10.1051/0004-6361/201015853
  • Nieves-Chinchilla, T., Vourlidas, A., Raymond, J.C., Linton, M.G., Al-haddad, N., Savani, N.P., Szabo, A., Hidalgo, M.A., Understanding the internal magnetic field configurations of ICMEs using more than 20 years of Wind observations (2018) Solar Physics, 293, p. 25. , https://doi.org/10.1007/s11207-018-1247-z
  • Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U., Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions (2005) Journal of Geophysical Research, 110, p. A01105. , https://doi.org/10.1029/2004JA010814
  • Prangé, R., Pallier, L., Hansen, K.C., Howard, R., Vourlidas, A., Courtin, R., Parkinson, C., An interplanetary shock traced by planetary auroral storms from the Sun to Saturn (2004) Nature, 432, pp. 78-81. , https://doi.org/10.1038/nature02986
  • Richardson, I.G., Cane, H.V., Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies (2004) Journal of Geophysical Research, 109, p. A09104. , https://doi.org/10.1029/2004JA010598
  • Richardson, I.G., Cane, H.V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009: Catalog and summary of properties (2010) Solar Physics, 264, pp. 189-237. , https://doi.org/10.1007/s11207-010-9568-6
  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Rees, A., Fitting flux ropes to a global MHD solution: A comparison of techniques (2004) Journal of Atmospheric and Solar-Terrestrial Physics, 66, pp. 1321-1331. , https://doi.org/10.1016/j.jastp.2004.03.019
  • Rodriguez, L., Masías-Meza, J.J., Dasso, S., Démoulin, P., Zhukov, A.N., Gulisano, A.M., Mierla, M., Janvier, M., Typical profiles and distributions of plasma and magnetic field parameters in magnetic clouds at 1 AU (2016) Solar Physics, 291, pp. 2145-2163. , https://doi.org/10.1007/s11207-016-0955-5
  • Rouillard, A.P., Davies, J.A., Forsyth, R.J., Savani, N.P., Sheeley, N.R., Thernisien, A., Zhang, T.-L., Winningham, J.D., A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft (2009) Journal of Geophysical Research, 114, p. A07106. , https://doi.org/10.1029/2008JA014034
  • Ruffenach, A., Lavraud, B., Farrugia, C.J., Démoulin, P., Dasso, S., Owens, M.J., Sauvaud, J.-A., Galvin, A.B., Statistical study of magnetic cloud erosion by magnetic reconnection (2015) Journal of Geophysical Research: Space Physics, 120, pp. 43-60. , https://doi.org/10.1002/2014JA020628
  • Russell, C.T., Shinde, A.A., Jian, L., A new parameter to define interplanetary coronal mass ejections (2005) Advances in Space Research, 35, pp. 2178-2184. , https://doi.org/10.1016/j.asr.2005.04.024
  • Siscoe, G., Odstrčil, D., Ways in which ICME sheaths differ from magnetosheaths (2008) Journal of Geophysical Research, 113, p. A00B07. , https://doi.org/10.1029/2008JA013142
  • Slavin, J.A., DiBraccio, G.A., Gershman, D.J., Imber, S.M., Poh, G.K., Raines, J.M., Zurbuchen, T.H., Solomon, S.C., MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions (2014) Journal of Geophysical Research: Space Physics, 119, pp. 8087-8116. , https://doi.org/10.1002/2014JA020319
  • Smith, C.W., L'Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J., The ACE magnetic fields experiment (1998) Space Science Reviews, 86, pp. 613-632. , https://doi.org/10.1023/A:1005092216668
  • Solomon, S.C., McNutt, R.L., Gold, R.E., Domingue, D.L., MESSENGER mission overview (2007) Space Science Reviews, 131, pp. 3-39. , https://doi.org/10.1007/s11214-007-9247-6
  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F., The Advanced Composition Explorer (1998) Space Science Reviews, 86, pp. 1-22. , https://doi.org/10.1023/A:1005082526237
  • Temmer, M., Reiss, M.A., Nikolic, L., Hofmeister, S.J., Veronig, A.M., Preconditioning of interplanetary space due to transient CME disturbances (2017) The Astrophysical Journal, 835, p. 141. , https://doi.org/10.3847/1538-4357/835/2/141
  • Titov, D.V., Svedhem, H., McCoy, D., Lebreton, J.P., Barabash, S., Bertaux, J.-L., Drossart, P., Coradini, M., Venus Express: Scientific goals, instrumentation, and scenario of the mission (2006) Cosmic Research, 44 (4), pp. 334-348. , https://doi.org/10.1134/S0010952506040071
  • Wang, C., Du, D., Richardson, J.D., Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU (2005) Journal of Geophysical Research, 110, p. A10107. , https://doi.org/10.1029/2005JA011198
  • Wang, Y., Ye, P., Zhou, G., Wang, S., Wang, S., Yan, Y., Wang, J., The interplanetary responses to the great solar activities in late October 2003 (2005) Solar Physics, 226, pp. 337-357. , https://doi.org/10.1007/s11207-005-6877-2
  • Webb, D.F., Howard, T.A., Coronal mass ejections: Observations (2012) Living Reviews in Solar Physics, 9, p. 83. , https://doi.org/10.12942/lrsp-2012-3
  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Zurbuchen, T.H., Understanding interplanetary coronal mass ejection signatures. Report of Working Group B (2006) Space Science Reviews, 123, pp. 177-216. , https://doi.org/10.1007/s11214-006-9017-x
  • Winslow, R.M., Anderson, B.J., Johnson, C.L., Slavin, J.A., Korth, H., Purucker, M.E., Baker, D.N., Solomon, S.C., Mercury's magnetopause and bow shock from MESSENGER magnetometer observations (2013) Journal of Geophysical Research: Space Physics, 118, pp. 2213-2227. , https://doi.org/10.1002/jgra.50237
  • Winslow, R.M., Lugaz, N., Philpott, L.C., Schwadron, N.A., Farrugia, C.J., Anderson, B.J., Smith, C.W., Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury (2015) Journal of Geophysical Research: Space Physics, 120, pp. 6101-6118. , https://doi.org/10.1002/2015JA021200
  • Winslow, R.M., Lugaz, N., Schwadron, N.A., Farrugia, C.J., Yu, W., Raines, J.M., Mays, M.L., Zurbuchen, T.H., Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions (2016) Journal of Geophysical Research: Space Physics, 121, pp. 6092-6106. , https://doi.org/10.1002/2015JA022307
  • Winslow, R.M., Philpott, L., Paty, C.S., Lugaz, N., Schwadron, N.A., Johnson, C.L., Korth, H., Statistical study of ICME effects on Mercury's magnetospheric boundaries and northern cusp region from MESSENGER (2017) Journal of Geophysical Research: Space Physics, 122, pp. 4960-4975. , https://doi.org/10.1002/2016JA023548
  • Witasse, O., Sánchez-Cano, B., Mays, M.L., Kajdič, P., Opgenoorth, H., Elliott, H.A., Richardson, I.G., Altobelli, N., Interplanetary coronal mass ejection observed at STEREO-A, Mars, Comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU (2017) Journal of Geophysical Research: Space Physics, 122, pp. 7865-7890. , https://doi.org/10.1002/2017JA023884
  • Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Y., Dynamics of large-scale solar-wind streams obtained by the double superposed epoch analysis: 2. Comparisons of CIRs vs. sheaths and MCs vs. ejecta (2017) Solar Physics, 292, p. 193. , https://doi.org/10.1007/s11207-017-1205-1
  • Zhang, T.L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell, C.T., Barabash, S., Lebreton, J.-P., Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express (2006) Planetary and Space Science, 54, pp. 1336-1343. , https://doi.org/10.1016/j.pss.2006.04.018
  • Zhang, G., Burlaga, L.F., Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases (1988) Journal of Geophysical Research, 93, pp. 2511-2518. , https://doi.org/10.1029/JA093iA04p02511
  • Zhang, J., Liemohn, M.W., Kozyra, J.U., Lynch, B.J., Zurbuchen, T.H., A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years (2004) Journal of Geophysical Research, 109, p. A09101. , https://doi.org/10.1029/2004JA010410

Citas:

---------- APA ----------
Janvier, M., Winslow, R.M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., Möstl, C.,..., Boakes, P.D. (2019) . Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 124(2), 812-836.
http://dx.doi.org/10.1029/2018JA025949
---------- CHICAGO ----------
Janvier, M., Winslow, R.M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., et al. "Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses" . Journal of Geophysical Research: Space Physics 124, no. 2 (2019) : 812-836.
http://dx.doi.org/10.1029/2018JA025949
---------- MLA ----------
Janvier, M., Winslow, R.M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., et al. "Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses" . Journal of Geophysical Research: Space Physics, vol. 124, no. 2, 2019, pp. 812-836.
http://dx.doi.org/10.1029/2018JA025949
---------- VANCOUVER ----------
Janvier, M., Winslow, R.M., Good, S., Bonhomme, E., Démoulin, P., Dasso, S., et al. Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. J. Geophys. Res. Space Phys. 2019;124(2):812-836.
http://dx.doi.org/10.1029/2018JA025949