Artículo

Janvier, M.; Dasso, S.; Démoulin, P.; Masías-Meza, J.J.; Lugaz, N. "Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU" (2015) Journal of Geophysical Research: Space Physics. 120(5):3328-3349
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Interplanetary coronal mass ejections (ICMEs) are the manifestation of solar transient eruptions, which can significantly modify the plasma and magnetic conditions in the heliosphere. They are often preceded by a shock, and a magnetic flux rope is detected in situ in a third to half of them. The main aim of this study is to obtain the best quantitative shape for the flux rope axis and for the shock surface from in situ data obtained during spacecraft crossings of these structures. We first compare the orientation of the flux rope axes and shock normals obtained from independent data analyses of the same events, observed in situ at 1-AU from the Sun. Then we carry out an original statistical analysis of axes/shock normals by deriving the statistical distributions of their orientations. We fit the observed distributions using the distributions derived from several synthetic models describing these shapes. We show that the distributions of axis/shock orientations are very sensitive to their respective shape. One classical model, used to analyze interplanetary imager data, is incompatible with the in situ data. Two other models are introduced, for which the results for axis and shock normals lead to very similar shapes; the fact that the data for MCs and shocks are independent strengthens this result. The model which best fits all the data sets has an ellipsoidal shape with similar aspect ratio values for all the data sets. These derived shapes for the flux rope axis and shock surface have several potential applications. First, these shapes can be used to construct a consistent ICME model. Second, these generic shapes can be used to develop a quantitative model to analyze imager data, as well as constraining the output of numerical simulations of ICMEs. Finally, they will have implications for space weather forecasting, in particular, for forecasting the time arrival of ICMEs at the Earth. Key Points We derive a generic shape for interplanetary magnetic clouds and shocks We compare observed distributions from several lists of MCs/shocks The ellipsoidal model is the best for both MC axis and shock shell ©2015. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU
Autor:Janvier, M.; Dasso, S.; Démoulin, P.; Masías-Meza, J.J.; Lugaz, N.
Filiación:Division of Mathematics, University of Dundee, Dundee, United Kingdom
Instituto de Astronomía y Física Del Espacio, UBA-CONICET, Buenos Aires, Argentina
Departamento de Ciencias de la Atmõsfera y Los Océanos), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Observatoire de Paris, LESIA, UMR 8109 (CNRS), Paris, France
Departamento de Física and IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Space Science Center, Department of Physics, University of New Hampshire, Durham, NH, United States
Palabras clave:ICME shocks; In situ observations; Interplanetary Coronal Mass Ejections; Magnetic Clouds
Año:2015
Volumen:120
Número:5
Página de inicio:3328
Página de fin:3349
DOI: http://dx.doi.org/10.1002/2014JA020836
Título revista:Journal of Geophysical Research: Space Physics
Título revista abreviado:J. Geophys. Res. Space Phys.
ISSN:21699380
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699380_v120_n5_p3328_Janvier

Referencias:

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N., Möstl, C., Marubashi, K., Hidalgo, M., Roussev, I.-I., Farrugia, C.-J., Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections (2013) Sol. Phys., 284, pp. 129-150
  • Antoniadou, I., Geranios, A., Vandas, M., Panagopoulou, M., Zacharopoulou, O., Malandraki, O., Elliptical magnetic clouds and geomagnetic storms (2008) Planet. Space Sci., 56, pp. 492-500
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock - Voyager, Helios, and IMP 8 observations (1981) J. Geophys. Res., 86, pp. 6673-6684
  • Cane, H.-V., The evolution of interplanetary shocks (1985) J. Geophys. Res., 90, pp. 191-197
  • Dasso, S., Mandrini, C.-H., Démoulin, P., Luoni, M.-L., Gulisano, A.-M., Large scale MHD properties of interplanetary magnetic clouds (2005) Adv. Space Res., 35, pp. 711-724
  • Dasso, S., Mandrini, C.-H., Démoulin, P., Luoni, M.-L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Adv. Space Res., 455, pp. 349-359
  • Dasso, S., Nakwacki, M.-S., Démoulin, P., Mandrini, C.-H., Progressive transformation of a flux rope to an ICME (2007) Sol. Phys., 244, pp. 115-137
  • Davies, J.-A., Perry, C.-H., Trines, R.-M.-G.-M., Harrison, R.-A., Lugaz, N., Möstl, C., Liu, Y.-D., Steed, K., Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry (2013) Astrophys. J., 777, p. 167
  • Démoulin, P., Dasso, S., Janvier, M., Does spacecraft trajectory strongly affect detection of magnetic clouds? (2013) Adv. Space Res., 550, p. A3
  • Farrugia, C.J., Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1254-1269
  • Feng, H.-Q., Wu, D.-J., Chao, J.-K., Size and energy distributions of interplanetary magnetic flux ropes (2007) J. Geophys. Res., 112, p. A02102
  • Feng, H.-Q., Wu, D.-J., Chao, J.-K., Lee, L.-C., Lyu, L.-H., Are all leading shocks driven by magnetic clouds? (2010) J. Geophys. Res., 115, p. A04107
  • Goldstein, H., On the field configuration in magnetic clouds (1983) Solar Wind Five, pp. 731-733. , in, edited by M. Neugebauer, NASA Conf. Publ., NASA CP-2280, Washington D. C
  • Gosling, J.-T., Coronal mass ejections and magnetic flux ropes in interplanetary space (1990) Physics of Magnetic Flux Ropes (A92-31201 12-75), 58, pp. 343-364. , in, AGU, Washington, D. C
  • Gosling, J.-T., Coronal mass ejections (2000) 26th International Cosmic Ray Conference ICRC XXVI, pp. 59-79. , in, edited by B. L. Dingus, D. B. Kieda, and M. H. Salamon, AIP Conference Proceedings 516, Am. Inst. of Phys. College Park, Md., doi:
  • Harrison, R.A., First imaging of coronal mass ejections in the heliosphere viewed from outside the Sun-Earth line (2008) Sol. Phys., 247, pp. 171-193
  • Hidalgo, M.-A., A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium (2003) J. Geophys. Res., 108 (A8), p. 1320
  • Hidalgo, M.-A., Nieves-Chinchilla, T., A global magnetic topology model for magnetic clouds. i (2012) Astrophys. J., 748, p. 109
  • Howard, T.-A., Three-dimensional reconstruction of coronal mass ejections using heliospheric imager data (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1242-1253
  • Howard, T.-A., Tappin, S.-J., Application of a new phenomenological coronal mass ejection model to space weather forecasting (2010) Space Weather, 8, p. S07004
  • Hu, Q., Dasgupta, B., Calculation of magnetic helicity of cylindrical flux rope (2005) Geophys. Res. Lett., 32, p. L12109
  • Hu, Q., Sonnerup B.-U.-Ö., Reconstruction of magnetic clouds in the solar wind: Orientations and configurations (2002) J. Geophys. Res., 107 (A7), p. 1142
  • Isavnin, A., Kilpua, E.-K.-J., Koskinen, H.-E.-J., Grad-shafranov reconstruction of magnetic clouds: Overview and improvements (2011) Sol. Phys., 273, pp. 205-219
  • Janvier, M., Démoulin, P., Dasso, S., Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation (2013) Adv. Space Res., 556, p. A50
  • Janvier, M., Démoulin, P., Dasso, S., Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs (2014) Adv. Space Res., 565, p. A99
  • Janvier, M., Démoulin, P., Dasso, S., In situ properties of small and large flux ropes in the solar wind (2014) J. Geophys. Res. Space Physics, 119, pp. 7088-7107
  • Lepping, R.-P., Wu, C.-C., Selection effects in identifying magnetic clouds and the importance of the closest approach parameter (2010) Ann. Geophys., 28, pp. 1539-1552
  • Lepping, R.-P., Burlaga, L.-F., Jones, J.-A., Magnetic field structure of interplanetary magnetic clouds at 1 AU (1990) J. Geophys. Res., 95, p. 11
  • Lepping, R.-P., Berdichevsky, D.-B., Szabo, A., Arqueros, C., Lazarus, A.-J., Profile of an average magnetic cloud at 1 AU for the quiet solar phase: Wind observations (2003) Sol. Phys., 212, pp. 425-444
  • Lin, C.-C., Chao, J.-K., Lee, L.-C., Lyu, L.-H., Wu, D.-J., A new shock fitting procedure for the MHD Rankine-Hugoniot relations for the case of small He2+ slippage (2006) J. Geophys. Res., 111, p. A09104
  • Liu, Y., Luhmann, J.-G., Huttunen, K.-E.-J., Lin, R.-P., Bale, S.-D., Russell, C.-T., Galvin, A.-B., Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? (2008) Astrophys. J., 677, pp. L133-L136
  • Liu, Y.-D., Luhmann, J.-G., Lugaz, N., Möstl, C., Davies, J.-A., Bale, S.-D., Lin, R.-P., On Sun-to-Earth propagation of coronal mass ejections (2013) Astrophys. J., 769, p. 45
  • Lugaz, N., Roussev, I., Numerical modeling of interplanetary coronal mass ejections and comparison with heliospheric images (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1187-1200
  • Lugaz, N., Vourlidas, A., Roussev, I.-I., Morgan, H., Solar-terrestrial simulation in the STEREO Era: The 24-25 January 2007 eruptions (2009) Sol. Phys., 256, pp. 269-284
  • Lugaz, N., Hernandez-Charpak, J.-N., Roussev, I.-I., Davis, C.-J., Vourlidas, A., Davies, J.-A., Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI (2010) Astrophys. J., 715, pp. 493-499
  • Lugaz, N., Farrugia, C.-J., Al-Haddad, N., Complex evolution of coronal mass ejections in the inner heliosphere as revealed by numerical simulations and STEREO observations: A review (2014) IAU Symposium, IAU Symposium, pp. 255-264. , in, 300, edited by B. Schmieder, J.-M. Malherbe, and S. T. Wu, Cambridge Univ. Press, Cambridge, U. K
  • Lundquist, S., Magnetohydrostatic fields (1950) Ark. Fys., 2, pp. 361-365
  • Lynch, B.-J., Zurbuchen, T.-H., Fisk, L.-A., Antiochos, S.-K., Internal structure of magnetic clouds: Plasma and composition (2003) J. Geophys. Res., 108 (A6), p. 1239
  • Lynch, B.-J., Gruesbeck, J.-R., Zurbuchen, T.-H., Antiochos, S.-K., Solar cycle-dependent helicity transport by magnetic clouds (2005) J. Geophys. Res., 110, p. A08107
  • Manchester, W.-B.-I., Gombosi, T.-I., Roussev, I., Ridley, A., De Zeeuw, D.-L., Sokolov, I.-V., Powell, K.-G., Tõth, G., Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation (2004) J. Geophys. Res., 109, p. A02107
  • Marubashi, K., Lepping, R.-P., Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models (2007) Ann. Geophys., 25, pp. 2453-2477
  • Matthaeus, W.-H., Velli, M., Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection (2011) Space Sci. Rev., 160, pp. 145-168
  • Mierla, M., On the 3-D reconstruction of coronal mass ejections using coronagraph data (2010) Ann. Geophys., 28, pp. 203-215
  • Möstl, C., Davies, J.-A., Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts (2013) Sol. Phys., 285, pp. 411-423
  • Möstl, C., Farrugia, C.-J., Biernat, H.-K., Leitner, M., Kilpua, E.-K.-J., Galvin, A.-B., Luhmann, J.-G., Optimized grad-shafranov reconstruction of a magnetic cloud using STEREO-Wind observations (2009) Sol. Phys., 256, pp. 427-441
  • Möstl, C., Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU (2014) Astrophys. J., 787, p. 119
  • Möstl, C., Strong coronal deflection of a solar storm and its interplanetary evolution to Earth and Mars (2015) Nat. Commun., , in press
  • Nakwacki, M., Dasso, S., Mandrini, C.-H., Démoulin, P., Analysis of large scale MHD quantities in expanding magnetic clouds (2008) J. Atmos. Sol. Terr. Phys., 70, pp. 1318-1326
  • Neugebauer, M., Goldstein, R., Particle and field signatures of coronal mass ejections in the solar wind (1997) Coronal Mass Ejections, Geophysical Monograph 99, pp. 245-251. , in, edited by N. Crooker, J. A. Joselyn, and J. Feynman, AGU, Washington, D. C
  • Press, W.-H., Teukolsky, S.-A., Vetterling, W.-T., Flannery, B.-P., (1992) Numerical Recipes, , Cambridge Univ. Press, Cambridge, U. K
  • Richardson, I.-G., Cane, H.-V., Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996-2009): Catalog and summary of properties (2010) Sol. Phys., 264, pp. 189-237
  • Riley, P., Linker, J.-A., Mikic, Z., Odstrcil, D., Zurbuchen, T.-H., Lario, D., Lepping, R.-P., Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft (2003) J. Geophys. Res., 108 (A7), p. 1272
  • Riley, P., Fitting flux ropes to a global MHD solution: A comparison of techniques (2004) J. Atmos. Sol. Terr. Phys., 66, pp. 1321-1331
  • Rouillard, A.-P., Relating white light and in situ observations of coronal mass ejections: A review (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1201-1213
  • Ruffenach, A., Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation (2012) J. Geophys. Res., 117, p. A09101
  • Tappin, S.-J., Howard, T.-A., Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison (2009) Space Sci. Rev., 147, pp. 55-87
  • Thernisien, A., Vourlidas, A., Howard, R.-A., CME reconstruction: Pre-STEREO and STEREO era (2011) J. Atmos. Sol. Terr. Phys., 73, pp. 1156-1165
  • Thernisien, A.-F.-R., Howard, R.-A., Vourlidas, A., Modeling of flux rope coronal mass ejections (2006) Astrophys. J., 652, pp. 763-773
  • Vandas, M., Romashets, E., Watari, S., Magnetic clouds of oblate shapes (2005) Planet. Space Sci., 53, pp. 19-24
  • Wang, C., Li, H., Richardson, J.-D., Kan, J.-R., Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impulses observed on the ground (2010) J. Geophys. Res., 115, p. A09215
  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S., Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs (2011) J. Geophys. Res., 116, p. A04104
  • Wimmer-Schweingruber, R.F., Understanding interplanetary coronal mass ejection signatures (2006) Space Sci. Rev., 123, pp. 177-216
  • Wood, B.-E., Howard, R.-A., An empirical reconstruction of the 2008 April 26 coronal mass ejection (2009) Astrophys. J., 702, pp. 901-910
  • Wood, B.-E., Howard, R.-A., Thernisien, A., Plunkett, S.-P., Socker, D.-G., Reconstructing the 3D morphology of the 17 May 2008 CME (2009) Sol. Phys., 259, pp. 163-178
  • Wood, B.-E., Howard, R.-A., Plunkett, S.-P., Socker, D.-G., Comprehensive observations of a solar minimum coronal mass ejection with the solar terrestrial relations observatory (2009) Astrophys. J., 694, pp. 707-717
  • Wood, B.-E., Howard, R.-A., Socker, D.-G., Reconstructing the morphology of an evolving coronal mass ejection (2010) Astrophys. J., 715, pp. 1524-1532
  • Wood, B.-E., Wu, C.-C., Howard, R.-A., Socker, D.-G., Rouillard, A.-P., Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24 (2011) Astrophys. J., 729, p. 70
  • Wood, B.-E., Rouillard, A.-P., Möstl, C., Battams, K., Savani, N.-P., Marubashi, K., Howard, R.-A., Socker, D.-G., Connecting coronal mass ejections and magnetic clouds: A case study using an event from 22 June 2009 (2012) Sol. Phys., 281, pp. 369-389
  • Zurbuchen, T.-H., Richardson, I.-G., In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections (2006) Space Sci. Rev., 123, pp. 31-43

Citas:

---------- APA ----------
Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J. & Lugaz, N. (2015) . Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. Journal of Geophysical Research: Space Physics, 120(5), 3328-3349.
http://dx.doi.org/10.1002/2014JA020836
---------- CHICAGO ----------
Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N. "Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU" . Journal of Geophysical Research: Space Physics 120, no. 5 (2015) : 3328-3349.
http://dx.doi.org/10.1002/2014JA020836
---------- MLA ----------
Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N. "Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU" . Journal of Geophysical Research: Space Physics, vol. 120, no. 5, 2015, pp. 3328-3349.
http://dx.doi.org/10.1002/2014JA020836
---------- VANCOUVER ----------
Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N. Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. Space Phys. 2015;120(5):3328-3349.
http://dx.doi.org/10.1002/2014JA020836