Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several studies have shown that the surroundings of the highest Andes mountains at midlatitudes in the Southern Hemisphere exhibit gravity waves (GWs) generated by diverse sources which may traverse the troposphere and then penetrate the upper layers if conditions are favorable. There is a specific latitude band where that mountain range is nearly perfectly aligned with the north-south direction, which favors the generation of wavefronts parallel to this orientation. This fact may allow an optimization of procedures to identify topographic GW in some of the observations. We analyze data per season to the east and west of these Andes latitudes to find possible significant differences in GW activity between both sectors. GW effects generated by topography and convection are expected essentially on the eastern side. We use satellite data from two different limb sounding methods: the Global Positioning System radio occultation (RO) technique and the Sounding of the Atmosphere using Broadband Emission Radiometry instrument, which are complementary with respect to the height intervals, in order to study the effects of GW from the stratosphere to the ionosphere. Activity becomes quantified by the GW average potential energy in the stratosphere and mesosphere and by the electron density variance content in the ionosphere. Consistent larger GW activity on the eastern sector is observed from the stratosphere to the ionosphere (night values). However, this fact remains statistically significant at the 90% significance level only during winter, when GWs generated by topography dominate the eastern sector. On the contrary, it is usually assumed that orographic GWs have nearly zero horizontal phase speed and will therefore probably be filtered at some height in the neutral atmosphere. However, this scheme relies on the assumption that the wind is uniform and constant. Our results also suggest that it is advisable to separate night and day cases to study GWs in the ionosphere, as it is more difficult to find significant statistical differences during daytime. This may happen because perturbations induced by GWs during daytime are more likely to occur in a disturbed environment that may hinder the identification of the waves. ©2015. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes
Autor:Alexander, P.; De La Torre, A.; Schmidt, T.; Llamedo, P.; Hierro, R.
Filiación:Instituto de Física de Buenos Aires, Conicet, Ciudad Universitaria, Pabellõn 1, Buenos Aires, 1428, Argentina
Facultad de Ingeniería, Universidad Austral, Pilar, Argentina
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
Palabras clave:gravity waves
Año:2015
Volumen:120
Número:10
Página de inicio:9014
Página de fin:9022
DOI: http://dx.doi.org/10.1002/2015JA021409
Título revista:Journal of Geophysical Research A: Space Physics
Título revista abreviado:J. Geophys. Res. A. Space Phys.
ISSN:21699380
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699380_v120_n10_p9014_Alexander

Referencias:

  • Alexander, P., De La Torre, A., Llamedo, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) J. Geophys. Res., 113. , D16117
  • Alexander, S.P., Klekociuk, A.R., Tsuda, T., Gravity wave and orographic wave activity observed around the Antarctic and Arctic stratospheric vortices by the COSMIC GPS-RO satellite constellation (2009) J. Geophys. Res., 114. , D17103
  • Alexander, S.P., Klekociuk, A.R., Pitts, M.C., McDonald, A.J., Arevalo-Torres, A., The effect of orographic gravity waves on Antarctic polar stratospheric cloud occurrence and composition (2011) J. Geophys. Res., 116. , D06109
  • Anthes, R.A., Exploring EarthŠs atmosphere with radio occultation: Contributions to weather, climate and space weather (2011) Atmos. Meas. Tech., 4, pp. 1077-1103
  • Baines, P.G., (1995) Topographic Effects in Stratified Fluids, , Cambridge Univ. Press, New York
  • Baumgaertner, A., McDonald, A., A gravity wave climatology for Antarctica compiled from Challenging Minisatellite Payload/Global Positioning System (CHAMP/GPS) radio occultations (2007) J. Geophys. Res., 112. , D05103
  • Bilitza, D., Ionospheric models for radio propagation studies (2002) Review of Radio Science 1999-2002, pp. 625-679. , edited by W. Ross Stone, Wiley, New York
  • De La Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophys. Res. Lett., 32. , L17815
  • De La Torre, A., Giraldez, A., Alexander, P., Saturated gravity wave spectra measured with balloons in Mendoza (Argentina) (1994) Geophys. Res. Lett., 21, pp. 2039-2042
  • De La Torre, A., Llamedo, P., Alexander, P., Schmidt, T., Wickert, J., Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles (2010) Adv. Space Res., 46, pp. 174-179
  • De La Torre, A., Alexander, P., Llamedo, P., Hierro, R., Nava, B., Radicella, S., Schmidt, T., Wickert, J., Wave activity at ionospheric heights above the Andes Mountains detected from FORMOSAT-3/COSMIC GPS radio occultation data (2014) J. Geophys. Res., 119, pp. 2046-2051
  • Fritts, D.C., Lund, T., Gravity wave influences in the thermosphere and ionosphere: Observations and modeling contributions (2011) Aeronomy of the Earth's Atmosphere and Ionosphere, pp. 109-130. , edited by M. Abdu and D. Pancheva, Springer, Heidelberg
  • Hamming, R.W., (1998) Digital Filters, p. 3rd. , Dover Publ., Mineola, New York. ed
  • Hines, C.O., Internal atmospheric gravity waves at ionospheric heights (1960) Can. J. Phys., 38, pp. 1441-1481
  • Hocke, K., Schlegel, K., A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995 (1996) Ann. Geophys., 14, pp. 917-940
  • Hocke, K., Tsuda, T., Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET Radio Occultation (2001) Geophys. Res. Lett., 28, pp. 2815-2818
  • Hocke, K., Tsuda, T., De La Torre, A., A study of stratospheric GW fluctuations and sporadic e at midlatitudes with focus on possible orographic effect of Andes (2002) J. Geophys. Res., 107, p. 4428
  • Høeg, P., Larsen, G.B., Benzon, H.-H., Grove-Rasmussen, J., Syndergaard, S., Mortensen, M.D., Christensen, J., Schultz, K., (1998) GPS Atmosphere Profiling Methods and Error Assessments, , Sci. Rep. 98-7, Sec. 4.1.4, Danish Meteorological Institute, Copenhagen, Denmark
  • John, S.R., Kumar, K.K., TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere (2012) Clim. Dyn., 39, pp. 1489-1505
  • Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R., Observing Earth's atmosphere with radio occultation measurement using the Global Positioning System (1997) J. Geophys. Res., 102, pp. 23429-23465
  • Lin, C.H., Lin, J.T., Chang, L.C., Liu, J.Y., Chen, C.H., Chen, W.H., Huang, H.H., Liu, C.H., Observations of global ionospheric responses to the 2009 stratospheric sudden warming event by FORMOSAT-3/COSMIC (2012) J. Geophys. Res., 117. , A06323
  • Lin, C.H., Lin, J.T., Chang, L.C., Chen, W.H., Chen, C.H., Liu, J.Y., Stratospheric sudden warming effects on the ionospheric migrating tides during 2008-2010 observed by FORMOSAT-3/COSMIC (2013) J. Atmos. Sol. Terr. Phys., 103, pp. 66-75
  • Lin, J.T., Lin, C.H., Chang, L.C., Huang, H.H., Liu, J.Y., Chen, A.B., Chen, C.H., Liu, C.H., Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming (2012) Geophys. Res. Lett., 39. , L02101
  • Liou, Y.-A., Pavelyev, A.G., Liu, S.-F., Pavelyev, A.A., Yen, N., Huang, C.-Y., Fong, C.-J., FORMOSAT-3/COSMIC GPS radio occultation mission: Preliminary results (2007) IEEE Trans. Geosci. Remote Sens., 45, pp. 3813-3826
  • Llamedo, P., De La Torre, A., Alexander, P., Luna, D., Schmidt, T., Wickert, J., A gravity wave analysis near to the Andes Range from GPS radio occultation data and mesoscale numerical simulations: Two case studies (2009) Adv. Space Res., 44, pp. 494-500
  • Luna, D., Alexander, P., De La Torre, A., Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements (2013) Adv. Space Res., 52, pp. 879-882
  • Lund, T.S., Fritts, D.C., Numerical simulation of gravity wave breaking in the lower thermosphere (2012) J. Geophys. Res., 117. , D21105
  • McDonald, A.J., Tan, B., Chu, X., Role of gravity waves in the spatial and temporal variability of stratospheric temperature measured by COSMIC/FORMOSAT-3 and Rayleigh lidar observations (2010) J. Geophys. Res., 115. , D19128
  • Mlynczak, M.G., Energetics of the mesosphere and lower thermosphere and the SABER experiment (1997) Adv. Space Res., 20, pp. 1177-1183
  • Moffat-Griffin, T., Jarvis, M.J., Colwell, S.R., Kavanagh, A.J., Manney, G.L., Daffer, W.H., Seasonal variations in lower stratospheric gravity wave energy above the Falkland Islands (2013) J. Geophys. Res. Atmos., 118, pp. 10861-10869
  • Park, J., Lühr, H., Lee, C., Kim, Y.H., Jee, G., Kim, J.-H., A climatology of medium-scale gravity wave activity in the midlatitude/low-latitude daytime upper thermosphere as observed by CHAMP (2014) J. Geophys. Res. Space Physics, 119, pp. 2187-2196
  • Reisin, E.R., Scheer, J., Gravity wave activity in the mesopause region from airglow measurements at El Leoncito (2004) J. Atmos. Sol. Terr. Phys., 66, pp. 655-661
  • Sato, K., Tateno, S., Watanabe, S., Kawatani, Y., Gravity wave characteristics in the Southern Hemisphere revealed by a high resolution middle atmosphere general circulation model (2012) J. Atmos. Sci., 69, pp. 1378-1396
  • Schmidt, T., De La Torre, A., Wickert, J., Global gravity wave activity in the tropopause region from CHAMP radio occultation data (2008) Geophys. Res. Lett., 35. , L16807
  • Schreiner, W.S., Sokolovskiy, S.V., Rocken, C., Hunt, D.C., Analysis and validation of GPS/MET radio occultation data in the ionosphere (1999) Radio Sci., 34, pp. 949-966
  • Smith, S., Baumgardner, J., Mendillo, M., Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere (2009) Geophys. Res. Lett., 36. , L08807
  • Tsuda, T., Hocke, K., Application of GPS radio occultation data for studies of atmospheric waves in the middle atmosphere and ionosphere (2004) J. Meteorol. Soc. Jpn., 82, pp. 419-426
  • Vadas, S.L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources (2007) J. Geophys. Res., 112. , A06305
  • Vadas, S.L., Liu, H.-L., The large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 hours of deep convection in Brazil (2013) J. Geophys. Res., 118, pp. 2593-2617
  • Vadas, S.L., Fritts, D.C., Alexander, M.J., Mechanism for the generation of secondary waves in wave breaking regions (2003) J. Atmos. Sci., 60, pp. 194-214
  • Vadas, S.L., Liu, H.-L., Lieberman, R.S., Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection (2014) J. Geophys. Res., 119, pp. 7762-7793
  • Wilson, R., Chanin, M.L., Hauchecorne, A., Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies (1991) J. Geophys. Res., 96, pp. 5153-5167
  • Yue, X., Schreiner, W.S., Lei, J., Rocken, C., Hunt, D.C., Kuo, Y.-H., Wan, W., Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event (2010) J. Geophys. Res., 115. , A00G09

Citas:

---------- APA ----------
Alexander, P., De La Torre, A., Schmidt, T., Llamedo, P. & Hierro, R. (2015) . Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes. Journal of Geophysical Research A: Space Physics, 120(10), 9014-9022.
http://dx.doi.org/10.1002/2015JA021409
---------- CHICAGO ----------
Alexander, P., De La Torre, A., Schmidt, T., Llamedo, P., Hierro, R. "Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes" . Journal of Geophysical Research A: Space Physics 120, no. 10 (2015) : 9014-9022.
http://dx.doi.org/10.1002/2015JA021409
---------- MLA ----------
Alexander, P., De La Torre, A., Schmidt, T., Llamedo, P., Hierro, R. "Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes" . Journal of Geophysical Research A: Space Physics, vol. 120, no. 10, 2015, pp. 9014-9022.
http://dx.doi.org/10.1002/2015JA021409
---------- VANCOUVER ----------
Alexander, P., De La Torre, A., Schmidt, T., Llamedo, P., Hierro, R. Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes. J. Geophys. Res. A. Space Phys. 2015;120(10):9014-9022.
http://dx.doi.org/10.1002/2015JA021409