Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Two populations of twisted magnetic field tubes, or flux ropes (hereafter, FRs), are detected by in situ measurements in the solar wind. While small FRs are crossed by the observing spacecraft within few hours, with a radius typically less than 0.1 AU, larger FRs, or magnetic clouds (hereafter, MCs), have durations of about half a day. The main aim of this study is to compare the properties of both populations of FRs observed by the Wind spacecraft at 1 AU. To do so, we use standard correlation techniques for the FR parameters, as well as histograms and more refined statistical methods. Although several properties seem at first different for small FRs and MCs, we show that they are actually governed by the same propagation physics. For example, we observe no in situ signatures of expansion for small FRs, contrary to MCs. We demonstrate that this result is in fact expected: small FRs expand similar to MCs, as a consequence of a total pressure balance with the surrounding medium, but the expansion signature is well hidden by velocity fluctuations. Next, we find that the FR radius, velocity, and magnetic field strength are all positively correlated, with correlation factors than can reach a value >0.5. This result indicates a remnant trace of the FR ejection process from the corona. We also find a larger FR radius at the apex than at the legs (up to 3 times larger at the apex), for FR observed at 1 AU. Finally, assuming that the detected FRs have a large-scale configuration in the heliosphere, we derived the mean axis shape from the probability distribution of the axis orientation. We therefore interpret the small FR and MC properties in a common framework of FRs interacting with the solar wind, and we disentangle the physics present behind their common and different features. © 2014. American Geophysical Union. All Rights Reserved.

Registro:

Documento: Artículo
Título:In situ properties of small and large flux ropes in the solar wind
Autor:Janvier, M.; Démoulin, P.; Dasso, S.
Filiación:Department of Mathematics, University of Dundee, Dundee, United Kingdom
Observatoire de Paris, LESIA, UMR 8109 (CNRS), Meudon Principal Cedex, France
Instituto de Astronomía y Física Del Espacio, UBA-CONICET, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Ciencias de la Atmõsfera y Los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Flux ropes; Interplanetary Coronal Mass Ejections; Magnetic clouds; Solar Wind
Año:2014
Volumen:119
Número:9
Página de inicio:7088
Página de fin:7107
DOI: http://dx.doi.org/10.1002/2014JA020218
Título revista:Journal of Geophysical Research: Space Physics
Título revista abreviado:J. Geophys. Res. Space Phys.
ISSN:21699380
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21699380_v119_n9_p7088_Janvier

Referencias:

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Farrugia, C.J., Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections (2013) Sol. Phys., 284, pp. 129-149
  • Aulanier, G., The physical mechanisms that initiate and drive solar eruptions (2014) IAU Symposium, 300, pp. 184-196
  • Aulanier, G., Török, T., Démoulin, P., Deluca, E.E., Formation of torus-unstable flux ropes and electric currents in erupting sigmoids (2010) Astrophys. J., 708, pp. 314-333
  • Aulanier, G., Janvier, M., Schmieder, B., The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops (2012) Astron. Astrophys., 543, p. A110
  • Bavassano, B., Woo, R., Bruno, R., Heliospheric plasma sheet and coronal streamers (1997) Geophys. Res. Lett., 24, pp. 1655-1658
  • Bothmer, V., Schwenn, R., Eruptive prominences as sources of magnetic clouds in the solar wind (1994) Space Sci. Rev., 70, pp. 215-220
  • Bothmer, V., Schwenn, R., The structure and origin of magnetic clouds in the solar wind (1998) Ann. Geophys., 16, pp. 1-24
  • Burlaga, L.F., Lepping, R.P., Jones, J.A., Global configuration of a magnetic cloud (1990) Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser, 58, pp. 373-377. , edited by C. T. Russell et al., AGU, Washington, D. C
  • Cartwright, M.L., Moldwin, M.B., Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: Evidence for reconnection across the HCS? (2008) J. Geophys. Res., 113. , A09105
  • Cartwright, M.L., Moldwin, M.B., Heliospheric evolution of solar wind small-scale magnetic flux ropes (2010) J. Geophys. Res., 115. , A08102
  • Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W., The driver of coronal mass ejections in the low corona: A flux rope (2013) Astrophys. J., 763, p. 43
  • Dasso, S., Magnetic helicity content in solar wind flux ropes (2009) IAU Symposium, IAU Symposium, 257, pp. 379-389. , edited by N. Gopalswamy, and D. F. Webb, Cambridge Univ. Press, Cambridge, U. K
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Astron. Astrophys., 455, pp. 349-359
  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H., Progressive transformation of a flux rope to an ICME (2007) Sol. Phys., 244, pp. 115-137
  • Démoulin, P., Dasso, S., Causes and consequences of magnetic cloud expansion (2009) Astron. Astrophys., 498, pp. 551-566
  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H., Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections (2008) Sol. Phys., 250, pp. 347-374
  • Démoulin, P., Dasso, S., Janvier, M., Does spacecraft trajectory strongly affect detection of magnetic clouds? (2013) Astron. Astrophys., 550, p. A3
  • Eastwood, J.P., Phan, T.D., Fear, R.C., Sibeck, D.G., Angelopoulos, V., Øieroset, M., Shay, M.A., Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause (2012) J. Geophys. Res., 117. , A08222
  • Fan, Y., Magnetic fields in the solar convection zone (2009) Living Rev. Sol. Phys., 6, p. 4
  • Feng, H.Q., Wu, D.J., Chao, J.K., Identification of configuration and boundaries of interplanetary magnetic clouds (2006) J. Geophys. Res., 111. , A07S90, doi: 10.1029/2005JA011509
  • Feng, H.Q., Wu, D.J., Chao, J.K., Size and energy distributions of interplanetary magnetic flux ropes (2007) J. Geophys. Res., 112. , A02102
  • Feng, H.Q., Wu, D.J., Lin, C.C., Chao, J.K., Lee, L.C., Lyu, L.H., Interplanetary small- and intermediate-sized magnetic flux ropes during 1995-2005 (2008) J. Geophys. Res., 113. , A12105
  • Foullon, C., The apparent layered structure of the heliospheric current sheet: Multi-spacecraft observations (2009) Sol. Phys., 259, pp. 389-416
  • Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Scime, E.E., Pizzo, V.J., Goldstein, B.E., Balogh, A., A forward-reverse shock pair in the solar wind driven by over-expansion of a coronal mass ejection: ULYSSES observations (1994) Geophys. Res. Lett., 21, pp. 237-240
  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P., Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation (2007) Adv. Space Res., 40, pp. 1881-1890
  • Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E., Global and local expansion of magnetic clouds in the inner heliosphere (2010) Astron. Astrophys., 509, p. A39
  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L., Expansion of magnetic clouds in the outer heliosphere (2012) Astron. Astrophys., 543, p. A107
  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J., Three-dimensional evolution of erupted flux ropes from the Sun (2-20 Rs) to 1 AU (2013) Sol. Phys., 284, pp. 203-215
  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J., Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet (2014) Sol. Phys., 289, pp. 2141-2156
  • Janvier, M., Démoulin, P., Dasso, S., Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation (2013) Astron. Astrophys., 556, p. A50
  • Janvier, M., Démoulin, P., Dasso, S., Are there different populations of flux ropes in the solar wind? (2014) Sol. Phys., 289, pp. 2633-2652
  • Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Simunac, K., STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period (2009) Ann. Geophys., 27, pp. 4491-4503
  • Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T., Observations of ICMEs and ICME-like solar wind structures from 2007-2010 using near-Earth and STEREO observations (2012) Sol. Phys., 281, pp. 391-409
  • Kilpua, E.K.J., Isavnin, A., Vourlidas, A., Koskinen, H.E.J., Rodriguez, L., On the relationship between interplanetary coronal mass ejections and magnetic clouds (2013) Ann. Geophys., 31, pp. 1251-1265
  • Kumar, A., Rust, D.M., Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes (1996) J. Geophys. Res., 101, p. 15
  • Lavraud, B., Ruffenach, A., Rouillard, A.P., Kajdic, P., Manchester, W.B., Lugaz, N., Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection (2014) J. Geophys. Res. Space Physics, 119, pp. 26-35
  • Leitner, M., Farrugia, C.J., Möstl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K., Consequences of the force-free model of magnetic clouds for their heliospheric evolution (2007) J. Geophys. Res., 112. , A06113
  • Lepping, R.P., Wu, C.C., Selection effects in identifying magnetic clouds and the importance of the closest approach parameter (2010) Ann. Geophys., 28, pp. 1539-1552
  • Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J., Profile of an average magnetic cloud at 1 AU for the quiet solar phase: Wind observations (2003) Sol. Phys., 212, pp. 425-444
  • Linton, M.G., Moldwin, M.B., A comparison of the formation and evolution of magnetic flux ropes in solar coronal mass ejections and magnetotail plasmoids (2009) J. Geophys. Res., 114. , A00B09, doi: 10.1029/2008JA013660
  • Lugaz, N., Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations (2010) Sol. Phys., 267, pp. 411-429
  • Lundquist, S., Magnetohydrostatic fields (1950) Ark. Fys., 2, pp. 361-365
  • Luoni, M.L., Démoulin, P., Mandrini, C.H., Van Driel-Gesztelyi, L., Twisted flux tube emergence evidenced in longitudinal magnetograms: Magnetic tongues (2011) Sol. Phys., 270, pp. 45-74
  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K., Solar cycle-dependent helicity transport by magnetic clouds (2005) J. Geophys. Res., 110. , A08107
  • Mariani, F., Neubauer, F.M., The interplanetary magnetic field (1990) Physics of the Inner Heliosphere i, pp. 183-206. , Physics and Chemistry in Space, Space and Solar Phycics, Springer, Berlin, Heidelberg
  • Moldwin, M.B., Ford, S., Lepping, R., Slavin, J., Szabo, A., Small-scale magnetic flux ropes in the solar wind (2000) Geophys. Res. Lett., 27, pp. 57-60
  • Nakwacki, M., Dasso, S., Mandrini, C.H., Démoulin, P., Analysis of large scale MHD quantities in expanding magnetic clouds (2008) J. Atmos. Sol. Terr. Phys., 70, pp. 1318-1326
  • Nakwacki, M., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M., Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU (2011) Astron. Astrophys., 535, p. A52
  • Owens, M.J., Démoulin, P., Savani, N.P., Lavraud, B., Ruffenach, A., Implications of non-cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events (2012) Sol. Phys., 278, pp. 435-446
  • Pinto, R.F., Brun, A.S., Flux emergence in a magnetized convection zone (2013) Astrophys. J., 772, p. 55
  • Rouillard, A.P., Intermittent release of transients in the slow solar wind: 1. Remote sensing observations (2010) J. Geophys. Res., 115. , A04103
  • Rouillard, A.P., Intermittent release of transients in the slow solar wind: 2. in situ evidence (2010) J. Geophys. Res., 115. , A04104
  • Ruffenach, A., Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation (2012) J. Geophys. Res., 117. , A09101
  • Schmieder, B., Démoulin, P., Aulanier, G., Solar filament eruptions and their physical role in triggering coronal mass ejections (2013) Adv. Space Res., 51, pp. 1967-1980
  • Simunac, K.D.C., The heliospheric plasma sheet observed in situ by three spacecraft over four solar rotations (2012) Sol. Phys., 281, pp. 423-447
  • Sturrock, P.A., Weber, M., Wheatland, M.S., Wolfson, R., Metastable magnetic configurations and their significance for solar eruptive events (2001) Astrophys. J., 548, pp. 492-496
  • Tian, H., Yao, S., Zong, Q., He, J., Qi, Y., Signatures of magnetic reconnection at boundaries of interplanetary small-scale magnetic flux ropes (2010) Astrophys. J., 720, pp. 454-464
  • Toriumi, S., Ilonidis, S., Sekii, T., Yokoyama, T., Probing the shallow convection zone: Rising motion of subsurface magnetic fields in the solar active region (2013) Astrophys. J. Lett., 770, p. L11
  • Weber, M.A., Fan, Y., Miesch, M.S., Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: Constraining the dynamo field strength (2013) Sol. Phys., 287, pp. 239-263
  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J., The heliospheric plasma sheet (1994) J. Geophys. Res., 99, pp. 6667-6680
  • Xiong, M., Zheng, H., Wang, Y., Wang, S., Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness (2006) J. Geophys. Res., 111, p. A08105
  • Yu, W., A statistical analysis of properties of small transients in the solar wind 2007-2009: STEREO and Wind observations (2014) J. Geophys. Res. Space Physics, 119, pp. 689-708
  • Zhang, H., Kivelson, M.G., Angelopoulos, V., Khurana, K.K., Pu, Z.Y., Walker, R.J., McPherron, R.L., Phan, T., Generation and properties of in vivo flux transfer events (2012) J. Geophys. Res., 117. , A05224
  • Zhou, X.-Y., Smith, E.J., Winterhalter, D., McComas, D.J., Skoug, R.M., Goldstein, B.E., Smith, C.W., Morphology and evolution of the heliospheric current and plasma sheets from 1 to 5 AU (2005) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, 592, p. 659. , edited by B. Fleck, T. H. Zurbuchen, and H. Lacoste, Eur. Space Agency Spec. Publ

Citas:

---------- APA ----------
Janvier, M., Démoulin, P. & Dasso, S. (2014) . In situ properties of small and large flux ropes in the solar wind. Journal of Geophysical Research: Space Physics, 119(9), 7088-7107.
http://dx.doi.org/10.1002/2014JA020218
---------- CHICAGO ----------
Janvier, M., Démoulin, P., Dasso, S. "In situ properties of small and large flux ropes in the solar wind" . Journal of Geophysical Research: Space Physics 119, no. 9 (2014) : 7088-7107.
http://dx.doi.org/10.1002/2014JA020218
---------- MLA ----------
Janvier, M., Démoulin, P., Dasso, S. "In situ properties of small and large flux ropes in the solar wind" . Journal of Geophysical Research: Space Physics, vol. 119, no. 9, 2014, pp. 7088-7107.
http://dx.doi.org/10.1002/2014JA020218
---------- VANCOUVER ----------
Janvier, M., Démoulin, P., Dasso, S. In situ properties of small and large flux ropes in the solar wind. J. Geophys. Res. Space Phys. 2014;119(9):7088-7107.
http://dx.doi.org/10.1002/2014JA020218