Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Andean Mountain range has been recognized as one of the biodiversity hotspotsof the world. The proposed mechanisms for such species diversification, among others, are due to the elevation processes occurring during the Miocene and the intensiveglacial action during the Pleistocene. In this study we investigated the diversificationhistory of the grasshopper Trimerotropis pallidipennis species complex which showsa particularly wide latitudinal and altitudinal distribution range across the northern, central and southern Andes in South America. Many genetic lineages of this complexhave been so far discovered, making it an excellent model to investigate the role of thecentral Andes Mountains together with climatic fluctuations as drivers of speciation. Phylogenetics, biogeographic and molecular clock analyses using a multi-locus datasetrevealed that in Peru there are at least two, and possibly four genetic lineages. Twodifferent stocks originated from a common ancestor from North/Central Americawould have dispersed toward southern latitudes favored by the closure of the PanamaIsthmus giving rise to two lineages, the coastal and mountain lineages, which still coexistin Peru (i.e., T. pallidipennis and T. andeana). Subsequent vicariant and dispersalevents continued the differentiation process, giving rise to three to six genetic lineages(i.e., clades) detected in this study, which were geographically restricted to locationsdispersed over the central Andes Mountains in South America. Our results provideanother interesting example of ``island diversification" motored by the topographyplus unstable climatic conditions during the Pleistocene, pointing out the presence ofa hotspot of diversification in the Andean region of Peru. © 2017 Guzmán et al.

Registro:

Documento: Artículo
Título:Unraveling the diversification history of grasshoppers belonging to the "Trimerotropis pallidipennis" (Oedipodinae: Acrididae) species group: A hotspot of biodiversity in the Central Andes
Autor:Guzmán, N.V.; Pietrokovsky, S.M.; Cigliano, M.M.; Confalonieri, V.A.
Filiación:Facultad de Ciencias Exactas y Naturales, Univ. de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Ecología, Genética y Evolución (IEGEBA), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas, Museo de La Plata, Universidad Nacional de la Plata, Centro de Estudios Parasitológicos y de Vectores (CEPAVE), La Plata, Buenos Aires, Argentina
Palabras clave:Biogeography; Grasshopper; Phylogenetic; Species delimitation; Acrididae; biodiversity; biogeography; cladistics; climate; driver; human; latitude; molecular clock; nonhuman; Peru; phylogeny; Pleistocene; species differentiation
Año:2017
Volumen:2017
Número:9
DOI: http://dx.doi.org/10.7717/peerj.3835
Título revista:PeerJ
Título revista abreviado:PeerJ
ISSN:21678359
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21678359_v2017_n9_p_Guzman

Referencias:

  • Allegrucci, G., Trucchi, E., Sbordoni, V., (2011) Tempo and mode of species diversification in Dolichopoda cave crickets, 60, pp. 108-121. , Orthoptera, Rhaphidophoridae). Molecular Phylogenetic and Evolution
  • Beaulieu, J.M., Tank, D.C., Donoghue, M.J., A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana (2013) BMC Evolutionary Biology, 13 (1), p. 80
  • Buerki, S., Forest, F., Alvarez, N., Nylander, J.A.A., Arrigo, N., Sanmartin, I., An evaluation of new parsimony-based versus parametric inference methods in biogeography: A case study using the globally distributed plant family Sapindaceae (2011) Journal of Biogeograhy, 38, pp. 531-550
  • Carbonell, C.S., Origin, evolution, and distribution of the Neotropical acridomorph fauna (Orthoptera): a preliminary hypothesis (1977) Revista de la Sociedad Entomologica Argentina, 36, pp. 153-175
  • Chesser, R.T., Evolution in the high Andes: the phylogenetics of Muscisaxicola ground-tyrants (2000) Molecular Phylogenetic and Evolution, 15 (3), pp. 369-380
  • Cigliano, M.M., Amedegnato, C., The high-Andean Jivarus Giglio-Tos (Orthoptera, Acridoidea, Melanoplinae): systematic, phylogenetic and biogeographic considerations (2010) Systematic Entomology, 35 (4), pp. 692-721
  • Cigliano, M.M., Amedegnato, C., Pocco, M.E., Lange, C.E., Revisionary study of Pediella Roberts (Orthoptera: Acrididae: Melanoplinae) from the Andes Highlands (2010) Zootaxa, 2431, pp. 51-61
  • Cigliano, M.M., Braun, H., Eades, D.C., Otte, D., Orthoptera species file (2017), http://Orthoptera.SpeciesFile.org, Version 5.0/5.0 (accessed on June 2017); Cigliano, M.M., Pocco, M.E., Lange, C.E., Grasshoppers of the Andes: new Melanoplinae and Gomphocerinae taxa (Insecta, Orthoptera, Acrididae) from Huascarán National Park and Callejón de Huaylas, Ancash, Peru (2011) Zoosystema, 33, pp. 522-544
  • Clement, M., Posada, D., Crandall, K., TCS: a computer program to estimate gene genealogies (2000) Molecular Ecology, 9 (10), pp. 1657-1660
  • Confalonieri, V.A., Sequeira, A.S., Todaro, L., Vilardi, J.C., Mitochondrial DNA and phylogeography of the grasshopper Trimerotropis pallidipennis in relation with clinal distribution of chromosome polymorphisms (1998) Heredity, 81, pp. 444-452
  • Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evolutionary Biology, 7, p. 214
  • Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7 (2012) Molecular Biology and Evolution, 29, pp. 1969-1973
  • Ehlers, J., Gibbard, P.L., (2007) Glaciation: overview. In: Elias SA, ed. Encyclopedia of quaternary science. Amsterdam: Elsevier, pp. 1023-1031
  • Fontaneto, D., Herniou, E.A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., Barraclough, T.G., Independently evolving species in asexual bdelloid rotifers (2007) PLOS Biology, 5, p. e87
  • Gansser, A., Facts and theories on the Andes (1973) Journal of Geological Society London, 129, pp. 93-131
  • Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J., Ghosh, P., Mulch, A., Rise of the Andes (2008) Science, 320, pp. 1304-1307
  • Gonzalez, L., Pfiffner, A.O., Morphologic evolution of the Central Andes of Peru (2011) International Journal of Earth Sciences, 101, pp. 307-321
  • Graham, A., The Andes: a geological overview from a biological perspective (2009) Annals of the Missouri Botanical Garden, 96, pp. 371-385
  • Gregory-Wodzicki, K.M., Uplift history of the Central and Northern Andes: a review (2010) Geological Society of America Bulletin, 112 (7), pp. 1091-1105
  • Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755
  • Hughes, C., Eastwood, R., Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes (2006) Proceedings of the Na- tional Academy of Sciences of the United States of America, 103, pp. 10334-10339
  • Husemann, M., Guzman, N.V., Danley, P.D., Cigliano, M.M., Confalonieri, V.A., Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): deep divergence across the Americas (2013) Journal of Biogeography, 40 (2), pp. 261-273
  • Klein, A.G., Seltzer, G.O., Isacks, B.L., Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile (1999) Quaternary Science Reviews, 18, pp. 63-84
  • Koichiro, T., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0 (2013) Molecular Biology and Evolution, 30, pp. 2725-2729
  • Koscinski, D., Handford, P., Tubaro, P.L., Sharp, S., Lougheed, S.C., Pleistocene climatic cycling and diversification of the Andean treefrog, Hypsiboas andinus (2008) Molecular Ecology, 17, pp. 2012-2025
  • Lin, C.P., Danforth, B.N., How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined data sets (2004) Molecular Phylogeneic and Evolution, 30, pp. 686-702
  • Morawetz, W., Raedig, C., Angiosperm biodiversity, endemism and conservation in the Neotropics (2007) Taxon, 56 (4), pp. 1245-1254
  • Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, pp. 853-858
  • Otte, D., The North American grasshoppers. Vol. II, Acrididae: Oedipodinae (1984), Cambridge: Harvard University Press; Otte, D., (1995) Orthoptera species file, 4. , Grasshoppers (Acridomorpha). Phildadelphia: Orthopterist' Society and Academy of Natural Science of Philadelphia
  • Papadopoulou, A., Anastasiou, I., Vogler, A.P., Revisiting the insect mitochondrial molecular clock: the Mid-Aegean trench calibration (2010) Molecular Biology and Evolution, 27, pp. 1672-1959
  • Pocco, M.E., Minutolo, C., Dinghi, P.A., Lange, C.E., Confalonieri, V.A., Cigliano, M.M., Species delimitation in the Andean grasshopper genus Orotettix Ronderos & Carbonell (Orthoptera: Melonoplinae): an integrative approach combining morphological, molecular and biogeographical data Zoological Journal of the Linnean Society, 174, pp. 733-759
  • Pocco, M.E., Posadas, P., Lange, C.E., Cigliano, M.M., Patterns of diversification in the high Andean Ponderacris grasshoppers (Orthoptera: Acrididae: Melanoplinae) (2013) Systematic Entomology, 38, pp. 365-389
  • Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Vogler, A.P., Sequence based species delimitation for the DNA taxonomy of undescribed insects (2006) Systematic Biology, 55, pp. 595-609
  • Posada, D., JModelTest: phylogenetic model averaging (2008) Molecular Biology and Evolution, 25 (7), pp. 1253-1256
  • Posada, D., Buckley, R., Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio test (2004) Systematic Biology, 53 (5), pp. 793-808
  • Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., (2014), http://beast.community/tracer, Tracer. v1.6; Raven, P.H., Amphitropical relationships in the floras of North and South America (1963) Quarterly Review Biology, 38, pp. 151-177
  • Ree, R.H., Smith, S.A., Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis (2008) Systematic Biology, 57 (1), pp. 4-14
  • Rehn, J.A.G., Studies in African Acrydiinae (Orthoptera, Acrididae): Part 1 (1930) Sections Cladonotae, Scelimenae, and Metrodorae. Proceedings of the Acadamy of Natural Sciences of Philadelphia, 82, p. 120
  • Rehn, J.A.G., The South American species of the Oedipodine genus Trimerotropis (Orthoptera: Acrididae) (1939) Transactions of the American Entomological Society, 65, pp. 395-414
  • Reid, N.M., Carstens, B.C., Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yulecoalescent model (2012) BMC Evolutionary Biology, 12, p. 196
  • Ronquist, F., Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography (1997) Systematic Biology, 46, pp. 195-203
  • Ronquist, F., Sanmartin, I., Phylogenetic methods in biogeography (2011) Annual Review of Ecology, Evolution and Systematics, 42, pp. 441-464
  • Saez, P.A., Fibla, P., Correa, C., Sallaberry, M., Salinas, H., Veloso, A., Mella, J., Méndez, M.A., A new endemic lineage of the Andean frog genus Telmatobius (Anura, Telmatobiidae) from the western slopes of the central Andes (2014) Zoological Journal of the Linnean Society, 171, pp. 769-782
  • Sérsic, A.N., Cosacov, A., Cocucci, A., Johnson, L.A., Pozner, R., Avila, L., Sites, J.W., Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia Biological Journal of the Linnean Society, 103, pp. 475-494
  • Talavera, G., Dinca, V., Vila, R., Factors affecting species delimitations with the GMYC model: insights from a butterfly survey (2013) Methods in Ecology and Evolution, 4, pp. 1101-1110
  • Templeton, A.R., Crandall, K.A., Sing, C.F., A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data (1992) III. Cladogram estimation. Genetics, 132, pp. 619-633
  • Turchetto-Zolet, A.C., Pinheiro, F., Salgueiro, F., Palma-Silva, C., Phylogeographical patterns shed light on evolutionary process in South America (2013) Molecular Ecology, 22, pp. 1193-1213
  • Wallis, G.P., Waters, J.M., Upton, P., Craw, D., Transverse alpine speciation driven by glaciation (2016) Trends in Ecology and Evolution, 31 (12), pp. 916-919
  • Wilson, J.S., Sipes, S.D., Messinger, C., Revisiting the great American biotic interchange through analyses of amphitropical bees (2014) Ecography, 37, pp. 001-006
  • Woodburne, M.O., The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens (2010) Journal of Mammalian Evolution, 17, pp. 245-264
  • Young, K., León, B., (2001) Kappelle, Brown AD, eds. Bosques nublados del neotropico. Heredria: INBio, pp. 549-580
  • Young, K., UlloaUlloa, C., Luteyn, J.L., Knapp, S., Plant evolution and endemism in Andean South America: an introduction (2002) The Botanical Review, 68, pp. 4-21
  • Yu, Y., Harris, A.J., Blair, C., He, X., RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography (2015) Molecular Phylogenetics and Evolution, 87, pp. 46-49
  • Yu, Y., Harris, A.J., He, X., S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories (2010) Molecular Phylogenetics and Evolution, 56 (2), pp. 848-850

Citas:

---------- APA ----------
Guzmán, N.V., Pietrokovsky, S.M., Cigliano, M.M. & Confalonieri, V.A. (2017) . Unraveling the diversification history of grasshoppers belonging to the "Trimerotropis pallidipennis" (Oedipodinae: Acrididae) species group: A hotspot of biodiversity in the Central Andes. PeerJ, 2017(9).
http://dx.doi.org/10.7717/peerj.3835
---------- CHICAGO ----------
Guzmán, N.V., Pietrokovsky, S.M., Cigliano, M.M., Confalonieri, V.A. "Unraveling the diversification history of grasshoppers belonging to the "Trimerotropis pallidipennis" (Oedipodinae: Acrididae) species group: A hotspot of biodiversity in the Central Andes" . PeerJ 2017, no. 9 (2017).
http://dx.doi.org/10.7717/peerj.3835
---------- MLA ----------
Guzmán, N.V., Pietrokovsky, S.M., Cigliano, M.M., Confalonieri, V.A. "Unraveling the diversification history of grasshoppers belonging to the "Trimerotropis pallidipennis" (Oedipodinae: Acrididae) species group: A hotspot of biodiversity in the Central Andes" . PeerJ, vol. 2017, no. 9, 2017.
http://dx.doi.org/10.7717/peerj.3835
---------- VANCOUVER ----------
Guzmán, N.V., Pietrokovsky, S.M., Cigliano, M.M., Confalonieri, V.A. Unraveling the diversification history of grasshoppers belonging to the "Trimerotropis pallidipennis" (Oedipodinae: Acrididae) species group: A hotspot of biodiversity in the Central Andes. PeerJ. 2017;2017(9).
http://dx.doi.org/10.7717/peerj.3835