Artículo

Ruster, T.; Kaufmann, H.; Luda, M.A.; Kaushal, V.; Schmiegelow, C.T.; Schmidt-Kaler, F.; Poschinger, U.G. "Entanglement-Based dc magnetometry with separated ions" (2017) Physical Review X. 7(3)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type j↑↓i þ eiφj↓↑i encoded in two 40Caþ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ, which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1=2 ground state and in the D5=2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT/√Hz. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.

Registro:

Documento: Artículo
Título:Entanglement-Based dc magnetometry with separated ions
Autor:Ruster, T.; Kaufmann, H.; Luda, M.A.; Kaushal, V.; Schmiegelow, C.T.; Schmidt-Kaler, F.; Poschinger, U.G.
Filiación:Institut für Physik, Universität Mainz, Staudingerweg 7, Mainz, 55128, Germany
DEILAP, CITEDEF, CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires, Argentina
Departamento de Física, FCEyN, UBA, IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Frequency estimation; Ground state; Ions; Magnetic field measurement; Magnetic fields; Magnetism; Magnetometry; Spectroscopy; Trapped ions; Consecutive measurements; DC magnetic field; Dynamical decoupling; High dynamic range; Information gain; Magnetic field fluctuations; Meta-stable state; Spatial resolution; Quantum entanglement
Año:2017
Volumen:7
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevX.7.031050
Título revista:Physical Review X
Título revista abreviado:Phys. Rev. X
ISSN:21603308
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21603308_v7_n3_p_Ruster

Referencias:

  • Jaklevic, R.C., Lambe, J., Silver, A.H., Mercereau, J.E., Quantum Interference Effects in Josephson Tunneling (1964) Phys. Rev. Lett., 12, p. 159
  • Drung, D., High-Performance dc Squid Read-Out Electronics (2002) Physica (Amsterdam), 368C, p. 134
  • Fong, L.E., Holzer, J.R., McBride, K.K., Lima, E.A., Baudenbacher, F., Radparvar, M., High-Resolution Room-Temperature Sample Scanning Superconducting Quantum Interference Device Microscope Configurable for Geological and Biomagnetic Applications (2005) Rev. Sci. Instrum., 76, p. 053703
  • Baudenbacher, F., Fong, L.E., Holzer, J.R., Radparvar, M., Monolithic Low-Transition-Temperature Superconducting Magnetometers for High Resolution Imaging Magnetic Fields of Room Temperature Samples (2003) Appl. Phys. Lett., 82, p. 3487
  • Huber, M.E., Koshnick, N.C., Bluhm, H., Archuleta, L.J., Azua, T., Björnsson, P.G., Gardner, B.W., Moler, K.A., Gradiometric Micro-SQUID Susceptometer for Scanning Measurements of Mesoscopic Samples (2008) Rev. Sci. Instrum., 79, p. 053704
  • Vasyukov, D., Anahory, Y., Embon, L., Halbertal, D., Cuppens, J., Neeman, L., Finkler, A., Rappaport, M.L., A Scanning Superconducting Quantum Interference Device with Single Electron Spin Sensitivity (2013) Nat. Nanotechnol., 8, p. 639
  • Budker, D., Romalis, M., Optical Magnetometry (2007) Nat. Phys., 3, p. 227
  • Wasilewski, W., Jensen, K., Krauter, H., Renema, J.J., Balabas, M.V., Polzik, E.S., Quantum Noise Limited and Entanglement-Assisted Magnetometry (2010) Phys. Rev. Lett., 104, p. 133601
  • Dang, H.B., Maloof, A.C., Romalis, M.V., Ultrahigh Sensitivity Magnetic Field and Magnetization Measurements with an Atomic Magnetometer (2010) Appl. Phys. Lett., 97, p. 151110
  • Kominis, I.K., Kornack, T.W., Allred, J.C., Romalis, M.V., A Subfemtotesla Multichannel Atomic Magnetometer (2003) Nature (london), 422, p. 596
  • Griffith, W.C., Knappe, S., Kitching, J., Femtotesla Atomic Magnetometry in a Microfabricated Vapor Cell (2010) Opt. Express, 18, p. 27167
  • Horsley, A., Du, G., Treutlein, P., Widefield Microwave Imaging in Alkali Vapor Cells with Sub-100 μm Resolution (2015) New J. Phys., 17, p. 112002
  • Koschorreck, M., Napolitano, M., Dubost, B., Mitchell, M.W., High Resolution Magnetic Vector-Field Imaging with Cold Atomic Ensembles (2011) Appl. Phys. Lett., 98, p. 074101
  • Vengalattore, M., Higbie, J.M., Leslie, S.R., Guzman, J., Sadler, L.E., Stamper-Kurn, D.M., High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate (2007) Phys. Rev. Lett., 98, p. 200801
  • Simin, D., Soltamov, V.A., Poshakinskiy, A.V., Anisimov, A.N., Babunts, R.A., Tolmachev, D.O., Mokhov, E.N., Sperlich, A., All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide (2016) Phys. Rev. X, 6, p. 031014
  • Wolf, T., Neumann, P., Nakamura, K., Sumiya, H., Ohshima, T., Isoya, J., Wrachtrup, J., Subpicotesla Diamond Magnetometry (2015) Phys. Rev. X, 5, p. 041001
  • Acosta, V.M., Bauch, E., Jarmola, A., Zipp, L.J., Ledbetter, M.P., Budker, D., Broadband Magnetometry by Infrared-Absorption Detection of Nitrogen-Vacancy Ensembles in Diamond (2010) Appl. Phys. Lett., 97, p. 174104
  • Angerer, A., Nöbauer, T., Wachter, G., Markham, M., Stacey, A., Majer, J., Schmiedmayer, J., Trupke, M., Subnanotesla Quantum-interference Magnetometry with A Single Spin in Diamond, , arXiv:1509.01637
  • Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wrachtrup, J., Nanoscale Imaging Magnetometry with Diamond Spins under Ambient Conditions (2008) Nature (london), 455, p. 648
  • Grinolds, M.S., Hong, S., Maletinsky, P., Luan, L., Lukin, M.D., Walsworth, R.L., Yacoby, A., Nanoscale Magnetic Imaging of a Single Electron Spin under Ambient Conditions (2013) Nat. Phys., 9, p. 215
  • Pelliccione, M., Jenkins, A., Ovartchaiyapong, P., Reetz, Ch., Emmanouilidou, E., Ni, N., Jayich, A.C.B., Scanned Probe Imaging of Nanoscale Magnetism at Cryogenic Temperatures with a Single-Spin Quantum Sensor (2016) Nat. Nanotechnol., 11, p. 700
  • Warring, U., Ospelkaus, C., Colombe, Y., Brown, K.R., Amini, J.M., Carsjens, M., Leibfried, D., Wineland, D.J., Techniques for Microwave Near-Field Quantum Control of Trapped Ions (2013) Phys. Rev. A, 87, p. 013437
  • Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, W.M., Bollinger, J.J., Optimized Dynamical Decoupling in a Model Quantum Memory (2009) Nature (london, 458, p. 996
  • Baumgart, I., Cai, J.-M., Retzker, A., Plenio, M.B., Wunderlich, Ch., Ultrasensitive Magnetometer Using a Single Atom (2016) Phys. Rev. Lett., 116, p. 240801
  • Kotler, S., Akerman, N., Glickman, Y., Keselman, A., Ozeri, R., Single-Ion Quantum Lock-In Amplifier (2011) Nature (london), 473, p. 61
  • Sheng, D., Perry, A.R., Krzyzewski, S.P., Geller, S., Kitching, J., Knappe, S., A Microfabricated Optically-Pumped Magnetic Gradiometer (2017) Appl. Phys. Lett., 110, p. 031106
  • Granata, C., Vettoliere, A., Nappi, C., Lisitskiy, M., Russo, M., Long Baseline Planar Superconducting Gradiometer for Biomagnetic Imaging (2009) Appl. Phys. Lett., 95, p. 042502
  • Blakley, S.M., Fedotov, I.V., Kilin, S.Ya., Zheltikov, A.M., Room-Temperature Magnetic Gradiometry with Fiber-Coupled Nitrogen-Vacancy Centers in Diamond (2015) Opt. Lett., 40, p. 3727
  • Roos, C.F., Chwalla, M., Kim, K., Riebe, M., Blatt, R., Designer Atoms for Quantum Metrology (2006) Nature (london), 443, p. 316
  • Unden, T., Balasubramanian, P., Louzon, D., Vinkler, Y., Plenio, M.B., Markham, M., Twitchen, D., Sushkov, A.O., Quantum Metrology Enhanced by Repetitive Quantum Error Correction (2016) Phys. Rev. Lett., 116, p. 230502
  • Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I., Improvement of Frequency Standards with Quantum Entanglement (1997) Phys. Rev. Lett., 79, p. 3865
  • Leibfried, D., Barrett, M.D., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Wineland, D.J., Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States (2004) Science, 304, p. 1476
  • Jones, J.A., Karlen, S.D., Fitzsimons, J., Ardavan, A., Benjamin, S.C., Briggs, G.A.D., Morton, J.J.L., Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States (2009) Science, 324, p. 1166
  • Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Blatt, R., 14-Qubit entanglement: Creation and coherence (2011) Phys. Rev. Lett., 106, p. 130506
  • Roos, C.F., Lancaster, G.P.T., Riebe, M., Häffner, H., Hänsel, W., Gulde, S., Becher, C., Blatt, R., Bell States of Atoms with Ultralong Lifetimes and Their Tomographic State Analysis (2004) Phys. Rev. Lett., 92, p. 220402
  • Langer, C., Ozeri, R., Jost, J.D., Chiaverini, J., DeMarco, B., Ben-Kish, A., Blakestad, R.B., Itano, W.M., Long-Lived Qubit Memory Using Atomic Ions (2005) Phys. Rev. Lett., 95, p. 060502
  • Kotler, S., Akerman, N., Navon, N., Glickman, Y., Ozeri, R., Measurement of the Magnetic Interaction between Two Bound Electrons of Two Separate Ions (2014) Nature (london), 510, p. 376
  • Kielpinski, D., Meyer, V., Rowe, M.A., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J., A Decoherence-Free Quantum Memory Using Trapped Ions (2001) Science, 291, p. 1013
  • Häffner, H., Schmidt-Kaler, F., Hänsel, W., Roos, C.F., Körber, T., Chwalla, M., Riebe, M., Blatt, R., Robust Entanglement (2005) Appl. Phys. B, 81, p. 151
  • Schulz, S., Poschinger, U., Ziesel, F., Schmidt-Kaler, F., Sideband Cooling and Coherent Dynamics in a Microchip Multi-Segmented Ion Trap (2008) New J. Phys., 10, p. 045007
  • Ruster, T., Schmiegelow, C.T., Kaufmann, H., Warschburger, C., Schmidt-Kaler, F., Poschinger, U.G., A Long-Lived Zeeman Trapped-Ion Qubit (2016) Appl. Phys. B, 122, p. 254
  • Poschinger, U.G., Huber, G., Ziesel, F., Deiß, M., Hettrich, M., Schulz, S.A., Singer, K., Schmidt-Kaler, F., Coherent Manipulation of a 40Caþ Spin Qubit in a Micro Ion Trap (2009) J. Phys. B, 42, p. 154013
  • Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Rosenband, T., Experimental Demonstration of a Robust, High-Fidelity Geometric Two Ion-Qubit Phase Gate (2003) Nature (london), 422, p. 412
  • http://link.aps.org/supplemental/10.1103/PhysRevX.7.031050, Supplemental Material at for a detailed error discussion; Kaufmann, H., Ruster, T., Schmiegelow, C.T., Schmidt-Kaler, F., Poschinger, U.G., Dynamics and Control of Fast Ion Crystal Splitting in Segmented Paul Traps (2014) New J. Phys., 16, p. 073012
  • Ruster, T., Warschburger, C., Kaufmann, H., Schmiegelow, C.T., Walther, A., Hettrich, M., Pfister, A., Poschinger, U.G., Experimental Realization of Fast Ion Separation in Segmented Paul Traps (2014) Phys. Rev. A, 90, p. 033410
  • Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Poschinger, U., Controlling Fast Transport of Cold Trapped Ions (2012) Phys. Rev. Lett., 109, p. 080501
  • Nusran, N.M., Momeen, M.U., Dutt, M.V.G., High-Dynamic-Range Magnetometry with a Single Electronic Spin in Diamond (2012) Nat. Nanotechnol., 7, p. 109
  • Waldherr, G., Beck, J., Neumann, P., Said, R.S., Nitsche, M., Markham, M.L., Twitchen, D.J., Wrachtrup, J., High-Dynamic-Range Magnetometry with a Single Nuclear Spin in Diamond (2012) Nat. Nanotechnol., 7, p. 105
  • Bonato, C., Blok, M.S., Dinani, H.T., Berry, D.W., Markham, M.L., Twitchen, D.J., Hanson, R., Optimized Quantum Sensing with a Single Electron Spin Using Real-Time Adaptive Measurements (2016) Nat. Nanotechnol., 11, p. 247
  • Macieszczak, K., Fraas, M., Demkowicz-Dobrzanski, R., Bayesian Quantum Frequency Estimation in Presence of Collective Dephasing (2014) New J. Phys., 16, p. 113002
  • Wiebe, N., Granade, Ch., Efficient Bayesian Phase Estimation (2016) Phys. Rev. Lett., 117, p. 010503
  • Taylor, J.M., Cappellaro, P., Childress, L., Jiang, L., Budker, D., Hemmer, P.R., Yacoby, A., Lukin, M.D., High-Sensitivity Diamond Magnetometer with Nanoscale Resolution (2008) Nat. Phys., 4, p. 810
  • Budker, D., Kimball, D.F., DeMille, D.P., (2008) Atomic Physics: An Exploration Through Problems and Solutions, pp. 98-100. , 2nd ed. (Oxford University Press, Oxford
  • Freeman, R., Kempsell, S.P., Levitt, M.H., Radiofre-quency Pulse Sequences which Compensate Their Own Imperfections (1980) J. Magn. Reson., 38, p. 453
  • Tommaseo, G., Pfeil, T., Revalde, G., Werth, G., Indelicato, P., Desclaux, J.P., The gJ-Factor in the Ground State of Caþ (2003) Eur. Phys. J. D, 25, p. 113
  • Chwalla, M., Benhelm, J., Kim, K., Kirchmair, G., Monz, T., Riebe, M., Schindler, P., Roos, C.F., Absolute Frequency Measurement of the 40Caþ4s2S1=2 − 3d2D5=2 Clock Transition (2009) Phys. Rev. Lett., 102, p. 023002
  • Kreuter, A., Becher, C., Lancaster, G.P.T., Mundt, A.B., Russo, C., Häffner, H., Roos, C., Safronova, M.S., Experimental and Theoretical Study of the 3d2D-Level Lifetimes of 40Caþ (2005) Phys. Rev. A, 71, p. 032504
  • All quantities with a “Δ” denote differences with respect to sensing positions x1 and x2; we consistently omit these arguments; Bal, M., Deng, C., Orgiazzi, J.-L., Ong, F.R., Lupascu, A., Ultrasensitive Magnetic Field Detection Using a Single Artificial Atom (2012) Nat. Commun., 3, p. 1324
  • Herschbach, N., Pyka, K., Keller, J., Mehlstäubler, T.E., Linear Paul Trap Design for an Optical Clock with Coulomb Crystals (2012) Appl. Phys. B, 107, p. 891
  • Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T., Frequency Comparison of Two High-Accuracy Alþ Optical Clocks (2010) Phys. Rev. Lett., 104, p. 070802
  • Itano, W.M., Bergquist, J.C., Brusch, A., Diddams, S.A., Fortier, T.M., Heavner, T.P., Hollberg, L., Lorini, L., Optical Frequency Standards Based on Mercury and Aluminum Ions (2007) Proc. SPIE, 6673, p. 667303
  • Kaufmann, H., Ruster, T., Schmiegelow, C.T., Luda, M.A., Kaushal, V., Schulz, J., Von Lindenfels, D., Poschinger, U.G., Fast Ion Swapping for Quantum-Information Processing (2017) Phys. Rev. A, 95, p. 052319
  • Schmidt-Kaler, F., Gerritsma, R., Entangled States of Trapped Ions Allow Measuring the Magnetic Field Gradient Produced by a Single Atomic Spin (2012) Europhys. Lett., 99, p. 53001
  • Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R., Barbara, B., Macroscopic Quantum Tunnelling of Magnetization in a Single Crystal of Nanomagnets (1996) Nature (london), 383, p. 145
  • Brownnutt, M., Kumph, M., Rabl, P., Blatt, R., Ion-Trap Measurements of Electric-Field Noise Near Surfaces (2015) Rev. Mod. Phys., 87, p. 1419

Citas:

---------- APA ----------
Ruster, T., Kaufmann, H., Luda, M.A., Kaushal, V., Schmiegelow, C.T., Schmidt-Kaler, F. & Poschinger, U.G. (2017) . Entanglement-Based dc magnetometry with separated ions. Physical Review X, 7(3).
http://dx.doi.org/10.1103/PhysRevX.7.031050
---------- CHICAGO ----------
Ruster, T., Kaufmann, H., Luda, M.A., Kaushal, V., Schmiegelow, C.T., Schmidt-Kaler, F., et al. "Entanglement-Based dc magnetometry with separated ions" . Physical Review X 7, no. 3 (2017).
http://dx.doi.org/10.1103/PhysRevX.7.031050
---------- MLA ----------
Ruster, T., Kaufmann, H., Luda, M.A., Kaushal, V., Schmiegelow, C.T., Schmidt-Kaler, F., et al. "Entanglement-Based dc magnetometry with separated ions" . Physical Review X, vol. 7, no. 3, 2017.
http://dx.doi.org/10.1103/PhysRevX.7.031050
---------- VANCOUVER ----------
Ruster, T., Kaufmann, H., Luda, M.A., Kaushal, V., Schmiegelow, C.T., Schmidt-Kaler, F., et al. Entanglement-Based dc magnetometry with separated ions. Phys. Rev. X. 2017;7(3).
http://dx.doi.org/10.1103/PhysRevX.7.031050