Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of the present study was to assess the ability of different white-rot fungi to tolerate polychlorinated biphenyls (PCBs) using predictive mycology, by relating fungal growth inhibition to ligninolityc enzyme secretion. Fungal strains were grown in the presence of PCBs in solid media and their radial growth values were modelled through the Dantigny-logistic like function in order to estimate the time required by the fungal colonies to attain half their maximum diameter. The principal component analysis (PCA) revealed an inverse correlation between strain tolerance to PCBs and the laccase secretion over time, being laccase production closely associated with fungal growth capacity. Finally, a PCA was run to regroup and split between resistant and sensitive fungi. Simultaneously, a function associated with a model predicting the tolerance to PCBs was developed. Some of the assayed isolates showed a promising capacity to be applied in PCB bioremediation. Abbreviations: Polychlorinated biphenyls (PCBs), white-rot fungi (WRF). © 2018, © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Registro:

Documento: Artículo
Título:Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology
Autor:Sadañoski, M.A.; Velázquez, J.E.; Fonseca, M.I.; Zapata, P.D.; Levin, L.N.; Villalba, L.L.
Filiación:Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones, CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
Laboratorio de Micología Experimental, Dpto. de Biodiversidad y Biología Experimental, FCEN, UBA, INMIBO (CONICET), CABA, Argentina
Palabras clave:laccase; modelling; Polychlorinated biphenyls; predictive mycology; white-rot fungi
Año:2018
Volumen:9
Número:4
Página de inicio:239
Página de fin:249
DOI: http://dx.doi.org/10.1080/21501203.2018.1481152
Título revista:Mycology
Título revista abreviado:Mycol.
ISSN:21501203
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21501203_v9_n4_p239_Sadanoski

Referencias:

  • Vyas, B.R.M., Erbanova, P., Kubatova, A., Šašek, V., Removal of PCBs by various white rot fungi in liquid cultures (1997) Folia Microbiol, 42 (2), pp. 136-140
  • Archibald, F.S., Lignin peroxidase activity is not important in biological bleaching and delignification of unbleached kraft pulp by trametes versicolor (1992) Appl Environ Microbiol, 58 (9), pp. 3101-3109
  • Baranyi, J., Roberts, T.A., Mathematics of predictive food microbiology (1995) Int J Food Microbiol, 26 (2), pp. 199-218
  • Bayman, P., Radkar, G.V., Transformation and tolerance of TNT (2, 4, 6-trinitrotoluene) by fungi (1997) Int Biodeterior Biodegrad, 39 (1), pp. 45-53
  • Beaudette, L.A., Davies, S., Fedorak, P.M., Ward, O.P., Pickard, M.A., Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi (1998) Appl Environ Microbiol, 64 (6), pp. 2020-2025
  • Bevilacqua, A., Cibelli, F., Raimondo, M.L., Carlucci, A., Lops, F., Sinigaglia, M., Corbo, M.R., Fungal bioremediation of olive mill wastewater: using a multi‐step approach to model inhibition or stimulation (2016) J Sci Food Agric, 97 (2), pp. 461-468
  • Bollag, J.M., Shuttleworth, K.L., Anderson, D.H., Laccase-mediated detoxification of phenolic compounds (1988) Appl Environ Microbiol, 54 (12), pp. 3086-3091
  • Borja, J., Taleon, D.M., Auresenia, J., Gallardo, S., Polychlorinated biphenyls and their biodegradation (2005) Process Biochem, 40 (6), pp. 1999-2013
  • Carabajal, M., Perullini, M., Jobbágy, M., Ullrich, R., Hofrichter, M., Levin, L., Removal of phenol by immobilization of Trametes versicolor in silica–alginate–fungus biocomposites and loofa sponge (2016) CLEAN, 44 (2), pp. 180-188
  • Chroma, L., Macek, T., Demnerova, K., Macková, M., Decolorization of RBBR by plant cells and correlation with the transformation of PCBs (2002) Chemosphere, 49 (7), pp. 739-748
  • Cloete, T.E., Celliers, L., Removal of Aroclor 1254 by the white rot fungus Coriolus versicolor in the presence of different concentrations of Mn (IV) oxide (1999) Int Biodeterior Biodegrad, 44 (4), pp. 243-253
  • Čvančarová, M., Křesinová, Z., Filipová, A., Covino, S., Cajthaml, T., Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products (2012) Chemosphere, 88 (11), pp. 1317-1323
  • Dantigny, P., Bensoussan, M., The logarithmic transformation should be avoided for stabilising the variance of mould growth rate (2008) Int J Food Microbiol, 121 (2), pp. 225-228
  • Dantigny, P., Guilmart, A., Bensoussan, M., Basis of predictive mycology (2005) Int J Food Microbiol, 100 (1), pp. 187-196
  • Dantigny, P., Nanguy, S.P.M., Judet-Correia, D., Bensoussan, M., A new model for germination of fungi (2011) Int J Food Microbiol, 146 (2), pp. 176-181
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat versión 2016 (2016) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, , http://www.infostat.com.ar
  • Dietrich, D., Hickey, W.J., Lamar, R., Degradation of 4, 4ʹ-dichlorobiphenyl, 3, 3ʹ, 4, 4ʹ-tetrachlorobiphenyl, and 2, 2ʹ, 4, 4ʹ, 5, 5ʹ-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium (1995) Appl Environ Microbiol, 61 (11), pp. 3904-3909
  • Fonseca, M.I., Shimizu, E., Zapata, P.D., Villalba, L.L., Copper inducing effect on laccase production of white rot fungi native from Misiones (Argentina) (2010) Enzyme Microb Technol, 46 (6), pp. 534-539
  • Gayosso-Canales, M., Rodríguez-Vázquez, R., Esparza-García, F.J., Bermúdez-Cruz, R.M., PCBs stimulate laccase production and activity in Pleurotus ostreatus thus promoting their removal (2012) Folia Microbiol, 57 (2), pp. 149-158
  • González, E.A., Martínez, C.N., Castrillo, M.L., Fonseca, M.I., Zapata, P.D., Villalba, L.L., Identificación por análisis filogenético de hongos de pudrición blanca (2013) J Basic Appl Genet, 4, p. 145
  • Jarosz-Wilkołazka, A., Kochmańska-Rdest, J., Malarcz̄Yk, E., Wardas, W., Leonowicz, A., Fungi and their ability to decolourize azo and anthraquinonic dyes (2002) Enzyme Microb Technol, 30 (4), pp. 566-572
  • Kamei, I., Kogura, R., Kondo, R., Metabolism of 4, 4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142 (2006) Appl Microbiol Biotechnol, 72 (3), pp. 566-575
  • Kamei, I., Sonoki, S., Haraguchi, K., Kondo, R., Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora (2006) Appl Microbiol Biotechnol, 73 (4), pp. 932-940
  • Krčmář, P., Kubátová, A., Votruba, J., Erbanová, P., Šašek, V., Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor (1999) World J Microbiol Biotechnol, 15 (2), pp. 269-276
  • Lee, H., Jang, Y., Choi, Y.S., Kim, M.J., Lee, J., Lee, H., Hong, J.H., Kim, J.J., Biotechnological procedures to select white rot fungi for the degradation of PAHs (2014) J Microbiol Methods, 97, pp. 56-62
  • Levin, L., Papinutti, L., Forchiassin, F., Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes (2004) Bioresour Technol, 94 (2), pp. 169-176
  • Martínez, C.N., Gonzalez, E.A., Castrillo, M.L., Fonseca, M.I., Zapata, P.D., Villalba, L.L., Identificación y análisis filogenético de una cepa fúngica nativa de la provincia de Misiones (2013) J Basic Appl Genet, 24, p. 146
  • Matsubara, M., Lynch, J.M., De Leij, F.A.A.M., A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land (2006) Enzyme Microb Technol, 39 (7), pp. 1365-1372
  • Moeder, M., Cajthaml, T., Koeller, G., Erbanová, P., Šašek, V., Structure selectivity in degradation and translocation of polychlorinated biphenyls (Delor 103) with a Pleurotus ostreatus (oyster mushroom) culture (2005) Chemosphere, 61 (9), pp. 1370-1378
  • Murado, M.A., Tejedor, M.C., Baluja, G., Interactions between polychlorinated biphenyls (PCBs) and soil microfungi. Effects of Aroclor-1254 and other PCBs on Aspergillus flavus cultures (1976) Bull Environ Contam Toxicol, 15, pp. 768-774
  • Novotný, Č., Svobodová, K., Erbanová, P., Cajthaml, T., Kasinath, A., Lang, E., Šašek, V., Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate (2004) Soil Biol Biochem, 36 (10), pp. 1545-1551
  • Paszczynski, A., Crawford, R.L., Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium (1995) Biotechnol Prog, 11 (4), pp. 368-379
  • Pezet, R., Pont, V., Hoang-Van, K., Evidence for oxidative detoxication of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea (1991) Physiol Mol Plant Pathol, 39 (6), pp. 441-450
  • Plačková, M., Svobodová, K., Cajthaml, T., Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor (2012) Int Biodeterior Biodegrad, 71, pp. 22-28
  • Pointing, S., Feasibility of bioremediation by white-rot fungi (2001) Appl Microbiol Biotechnol, 57 (1-2), pp. 20-33
  • Sharma, J.K., Gautam, R.K., Nanekar, S.V., Weber, R., Singh, B.K., Singh, S.K., Juwarkar, A.A., Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils (2017) Environ Sci Pollut Res, pp. 1-21
  • Stella, T., Covino, S., Čvančarová, M., Filipová, A., Petruccioli, M., D’Annibale, A., Cajthaml, T., Bioremediation of long-term PCB-contaminated soil by white-rot fungi (2017) J Hazard Mater, 324, pp. 701-710
  • Suzuki, R., Shimodaira, H., Pvclust: an R package for assessing the uncertainty in hierarchical clustering (2006) Bioinformatics, 22 (12), pp. 1540-1542
  • Yin, Y., Guo, J., Zheng, L., Tian, L., Wang, X., Capability of polychlorinated biophenyl (PCBs) degrading fungi segregated from sediments (2011) World J Microbiol Biotechnol, 27 (11), pp. 2567-2574

Citas:

---------- APA ----------
Sadañoski, M.A., Velázquez, J.E., Fonseca, M.I., Zapata, P.D., Levin, L.N. & Villalba, L.L. (2018) . Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology. Mycology, 9(4), 239-249.
http://dx.doi.org/10.1080/21501203.2018.1481152
---------- CHICAGO ----------
Sadañoski, M.A., Velázquez, J.E., Fonseca, M.I., Zapata, P.D., Levin, L.N., Villalba, L.L. "Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology" . Mycology 9, no. 4 (2018) : 239-249.
http://dx.doi.org/10.1080/21501203.2018.1481152
---------- MLA ----------
Sadañoski, M.A., Velázquez, J.E., Fonseca, M.I., Zapata, P.D., Levin, L.N., Villalba, L.L. "Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology" . Mycology, vol. 9, no. 4, 2018, pp. 239-249.
http://dx.doi.org/10.1080/21501203.2018.1481152
---------- VANCOUVER ----------
Sadañoski, M.A., Velázquez, J.E., Fonseca, M.I., Zapata, P.D., Levin, L.N., Villalba, L.L. Assessing the ability of white-rot fungi to tolerate polychlorinated biphenyls using predictive mycology. Mycol. 2018;9(4):239-249.
http://dx.doi.org/10.1080/21501203.2018.1481152