Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nickel modification by spontaneous deposition of transition metals such as Ag and Cu is shown as an economic and simple alternative for the activation of hydrogen evolution reaction (HER) on cathodes in alkaline media. The kinetics of HER is studied on Ni/Ag and Ni/Cu catalysts by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) using a rotating disk electrode (RDE). Freshly synthesized catalysts, as well as catalysts subjected to a short chronoamperometric ageing procedure, are analyzed and the kinetic and thermodynamic parameters of the HER are obtained. The nickel surface modified with transition metals with an outer shell electronic configuration [xd10(x+1)s1], such as Cu (3d104s1) and Ag (4d105s1), shows an improved activity for the HER compared to bare nickel. Furthermore, the Ni/Cu catalyst presents a decreased onset potential. The hydrogen evolution rate, measured as current density at –1.5 V (vs. SCE), is similar on Ni/Cu and Ni/Ag electrodes. © 2016 Science Press

Registro:

Documento: Artículo
Título:Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu
Autor:Franceschini, E.A.; Lacconi, G.I.; Corti, H.R.
Filiación:INFIQC-CONICET, Departamento de Fisicoquímica – Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA) San Martín, Buenos Aires, Argentina
INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Buenos Aires, Argentina
Palabras clave:Electrochemical impedance spectroscopy; Hydrogen evolution reaction; Nickel/Copper; Nickel/Silver; Spontaneous deposition; Catalysts; Cathodes; Cyclic voltammetry; Deposition; Electrochemical electrodes; Electrodes; Hydrogen; Kinetics; Nickel; Rotating disks; Silver; Spectroscopy; Transition metals; Electronic configuration; Hydrogen evolution; Hydrogen evolution rate; Hydrogen evolution reactions; Improved activities; Kinetic and thermodynamic parameters; Rotating disk electrodes; Spontaneous deposition; Electrochemical impedance spectroscopy
Año:2017
Volumen:26
Número:3
Página de inicio:466
Página de fin:475
DOI: http://dx.doi.org/10.1016/j.jechem.2016.10.009
Título revista:Journal of Energy Chemistry
Título revista abreviado:J. Energy Chem.
ISSN:20954956
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20954956_v26_n3_p466_Franceschini

Referencias:

  • Gahleitner, G., (2013) Int. J. Hydrogen Energy, 38, pp. 2039-2061
  • Pletcher, D., Xiaohong, L., (2011) Int. J. Hydrogen Energy, 36, pp. 15089-15104
  • Bockris, J.O.M., (2013) Int. J. Hydrogen Energy, 38, pp. 2579-2588
  • Lubitz, W., Tumas, W., (2007) Chem. Rev., 107, pp. 3900-3903
  • Doubova, L.M., Trasatti, S., (1999) J. Electroanal. Chem., 467, pp. 164-176
  • Hu, H., Qiao, M., Pei, Y., Fan, K., Li, H., Zong, B., Zhang, X., (2003) Appl. Catal. Gen., 252, pp. 173-183
  • Solmaz, R., Döner, A., Kardas, G., (2008) Electrochem. Commun., 10, pp. 1909-1911
  • Bianchi, I., Guerrini, E., Trasatti, S., (2005) Chem. Phys., 319, pp. 192-199
  • Cardoso, D.S.P., Eugénio, S., Silva, T.M., Santos, D.M.F., Sequeira, C.A.C., Montemor, M.F., (2015) RSC Adv., 5, pp. 43456-43461
  • Zhu, Y., Zhang, X., Song, J., Wang, W., Yue, F., Ma, Q., (2015) Appl. Catal. Gen., 500, pp. 51-57
  • Wang, J., Cui, W., Liu, Q., Xing, Z., Asiri, A.M., Sun, X., (2016) Adv. Mater., 28, pp. 215-230
  • Zhou, D., He, L., Zhu, W., Hou, X., Wang, K., Du, G., Zheng, C., Asirid, A.M., J. Mater. Chem. A, doi:; Feng, L.L., Yu, G., Wu, Y., Li, G.D., Li, H., Sun, Y., Asefa, T., Zou, X., (2015) J. Am. Chem. Soc., 137, pp. 14023-14026
  • Zou, X., Zhang, Y., (2015) Chem. Soc. Rev., 44, pp. 5148-5180
  • Tian, J., Liu, Q., Asiri, A.M., Sun, X., (2014) J. Am. Chem. Soc., 136, pp. 7587-7590
  • Garche, J., (2009) Encyclopedia of Electrochemical Power Sources, 1, p. 751. , Elsevier Amsterdam
  • Santos, E., Schmickler, W., (2007) Angew. Chem. Int. Ed., 46, pp. 8262-8265
  • Quaino, P., Juarez, F., Santos, E., Schmickler, W., (2014) Beilstein J. Nanotechnol., 5, pp. 846-854
  • Conway, B.E., Beatty, E.M., Demaine, P.A.D., (1962) Electrochim. Acta, 7, pp. 39-54
  • Sharifi-Asl, S., Macdonald, D.D., (2013) J. Electrochem. Soc., 160, pp. H382-H391
  • Yin, Z., Chen, F., (2014) J. Power Sources, 265, pp. 273-281
  • Tang, M.H., Hahn, C., Klobuchar, A.J., Desmond Ng, J.W., Wellendorff, J., Bligaard, T., Jaramillo, T.F., (2014) Phys. Chem. Chem. Phys., 16, pp. 19250-19257
  • Franceschini, E.A., Lacconi, G.I., Corti, H.R., (2015) Electrochim. Acta, 159, pp. 210-218
  • Franceschini, E.A., Lacconi, G.I., Corti, H.R., (2016) Int. J. Hydrogen Energy, 41, pp. 3326-3338
  • Rodríguez-Carvajal, J., (1993) J. Phys. B, 192, pp. 55-56
  • Franceschini, E.A., Bruno, M.M., Viva, F.A., Williams, F.J., Jobbágy, M., Corti, H.R., (2012) Electrochim. Acta, 71, pp. 173-180
  • Haynes, W.M., CRC Handbook of Chemistry and Physics (2003), 94th ed. CRC Press Boca Raton, FL; Trasatti, S., Petrii, O.A., (1991) Pure Appl. Chem., 63, pp. 711-734
  • Vázquez-Gómez, L., Cattarin, S., Guerriero, P., Musiani, M., (2008) Electrochim. Acta, 53, pp. 8310-8318
  • Xu, S.L., Song, X.Y., Fan, C.H., Chen, G.Z., Zhao, W., You, T., Sun, S.X., (2007) J. Cryst. Growth, 305, pp. 3-7
  • Susman, M.D., Feldman, Y., Vaskevich, A., Rubinstein, I., (2014) ACS Nano, 8, pp. 162-174
  • Ngamlerdpokin, K., Tantavichet, N., (2014) Int. J. Hydrogen Energy, 39, pp. 2505-2515
  • Dang, T.M.D., Le, T.T.T., Fribourg-Blanc, E., Dang, M.C., (2011) Adv. Nat. Sci. Nanosci. Nanotechnol., 2, pp. 025004-025010
  • ðukic, A., Alar, V., Firak, M., Jakovljevic, S., (2013) J. Alloy Compd., 573, pp. 128-132
  • Hall, D.S., Bock, C., MacDougall, B.R., (2013) J. Electrochem. Soc., 160, pp. F235-F243
  • Szklarska-Smialowski, Z., Smialowski, M., (1963) J. Electrochem. Soc., 110, pp. 444-448
  • Franceschini, E.A., Bruno, M.M., Williams, F.J., Viva, F.A., Corti, H.R., (2013) ACS Appl. Mater. Interfaces, 5, pp. 10437-10444
  • Bruno, M.M., Franceschini, E.A., Planes, G.A., Corti, H.R., (2010) J. Appl. Electrochem., 40, pp. 257-263
  • Zurilla, R.W., Sen, R.K., Yeager, E., (1978) J. Electrochem. Soc., 125, pp. 1103-1109
  • Kuhn, A.T., Mortimer, C.J., Bond, G.C., Lindley, J., (1972) J. Electroanal. Chem., 34, pp. 1-14
  • Ruderman, A., Juarez, M.F., Soldano, G., Avalle, L.B., Beltramo, G., Giesen, M., Santos, E., (2013) Electrochim. Acta, 109, pp. 403-410
  • Ruderman, A., Juarez, M.F., Avalle, L.B., Beltramo, G., Giesen, M., Santos, E., (2013) Electrochem. Commun., 34, pp. 235-238
  • Kreysa, G., Hakansson, B., Ekdunge, P., (1988) Electrochim. Acta, 33, pp. 1351-1357
  • Daftsis, E., Pagalos, N., Jannakoudakis, A., Jannakoudakis, P., Theodoridou, E., Rashkov, R., Loukaytsheva, M., Atanassov, N., (2003) J. Electrochem. Soc., 150, pp. C787-C793
  • Harrington, D.A., Conway, B.E., (1987) Electrochim. Acta, 32, pp. 1703-1712
  • Armstrong, R.D., Henderson, M., (1972) J. Electroanal. Chem., 39, pp. 81-90
  • Brug, G.J., Van Den Eeden, A.L.G., Sluyters-Rehbach, M., Sluyters, J.H., (1984) J. Electroanal. Chem. Interfacial Electrochem., 176, pp. 275-295
  • Lasia, A., (1999) Modern Aspects of Electrochemistry, 32, p. 143. , Kluwer Academic/Plenum Publishers New York
  • Rammelt, U., Reinhard, G., (1990) Electrochim. Acta, 35, pp. 1045-1049
  • Pajkossy, T.J., (1991) Electroanal. Chem. Interfacial Electrochem., 300, pp. 1-11
  • Heiduschka, P., Munz, A.W., Gopel, W., (1994) Electrochim. Acta, 39, pp. 2207-2223
  • Damian, A., Omanovic, S., (2006) J. Power Sources, 158, pp. 464-476
  • Bai, L., Harrington, D.A., Conway, B.E., (1987) Electrochim. Acta, 32, pp. 1713-1731
  • Hall, D.S., Lockwood, D.J., Poirier, S., Bock, C., MacDougall, B.R., (2014) ACS Appl. Mater Interfaces, 6, pp. 3141-3149

Citas:

---------- APA ----------
Franceschini, E.A., Lacconi, G.I. & Corti, H.R. (2017) . Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu. Journal of Energy Chemistry, 26(3), 466-475.
http://dx.doi.org/10.1016/j.jechem.2016.10.009
---------- CHICAGO ----------
Franceschini, E.A., Lacconi, G.I., Corti, H.R. "Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu" . Journal of Energy Chemistry 26, no. 3 (2017) : 466-475.
http://dx.doi.org/10.1016/j.jechem.2016.10.009
---------- MLA ----------
Franceschini, E.A., Lacconi, G.I., Corti, H.R. "Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu" . Journal of Energy Chemistry, vol. 26, no. 3, 2017, pp. 466-475.
http://dx.doi.org/10.1016/j.jechem.2016.10.009
---------- VANCOUVER ----------
Franceschini, E.A., Lacconi, G.I., Corti, H.R. Hydrogen evolution kinetics on Ni cathodes modified by spontaneous deposition of Ag or Cu. J. Energy Chem. 2017;26(3):466-475.
http://dx.doi.org/10.1016/j.jechem.2016.10.009