Puentes, G."Topology and holonomy in discrete-time quantum walks" (2017) Crystals. 7(5)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We present a research article which formulates the milestones for the understanding and characterization of holonomy and topology of a discrete-time quantum walk architecture, consisting of a unitary step given by a sequence of two non-commuting rotations in parameter space. Unlike other similar systems recently studied in detail in the literature, this system does not present continous 1D topological boundaries, it only presents a discrete number of Dirac points where the quasi-energy gap closes. At these discrete points, the topological winding number is not defined. Therefore, such discrete points represent topological boundaries of dimension zero, and they endow the system with a non-trivial topology. We illustrate the non-trivial character of the system by calculating the Zak phase. We discuss the prospects of this system, we propose a suitable experimental scheme to implement these ideas, and we present preliminary experimental data. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.


Documento: Artículo
Título:Topology and holonomy in discrete-time quantum walks
Autor:Puentes, G.
Filiación:Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Pabellon 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
3rd Institute of Physics, Research Center Scope and MPI for Solid State Research, University of Stuttgart, Stuttgart, 70569, Germany
Palabras clave:Holonomy; Quantum walks; Topology; Zak phase
Título revista:Crystals
Título revista abreviado:Crystals


  • Berry, M.V., Classical adiabatic angles and quantal adiabatic phase (1985) J. Phys. A, 18, p. 15
  • Hannay, J., Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian (1985) J. Phys. A, 18, p. 221
  • Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P., Experimental observation of the quantum Hall effect and Berry’s phase in graphene (2005) Nature, 438, pp. 201-204
  • Delplace, P., Ullmo, D., Montambaux, G., Zak phase and the existence of edge states in graphene (2011) Phys. Rev. B, 84
  • Kane, C.L., Mele, E.J., Z 2 topological order and the quantum spin Hall effect (2005) Phys. Rev. Lett, 95
  • Delacretaz, G., Grant, E.R., Whetten, R.L., Wöste, L., Zwanziger, J.W., Fractional quantization of molecular pseudorotation in Na 3 (1986) Phys. Rev. Lett, 1986, p. 95
  • Nadj-Perge, S., Drozdov, I.K., Li, J., Chen, H., Jeon, S., Seo, J., Macdonald, A.H., Yazdani, A., Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor (2014) Science, 346, pp. 602-607
  • Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase (1983) Phys. Rev. Lett, 51
  • Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuru-Guzik, A., White, A.G., Observation of topologically protected bound states in photonic quantum walks (2012) Nat. Commun, 3, p. 882
  • Kitagawa, T., Rudner, M.S., Berg, E., Demler, E., Exploring topological phases with quantum walks (2010) Phys. Rev. A, 32
  • Provost, J., Vallee, G., Riemannian structure on manifolds of quantum states (1980) Comm. Math. Phys, 86, pp. 289-301
  • Bouchiat, C., Gibbons, G., Non-integrable quantum phase in the evolution of a spin-1 system: A physical consequence of the non-trivial topology of the quantum state-space (1988) J. Phys. France, 49, pp. 187-199
  • Page, D., Geometrical description of Berry’s phase (1987) Phys. Rev. A, 36, p. 3479
  • Berry, M.V., (1989) Geometric Phases in Physics, , Shapere, A., Wilczek, F., Eds., World Scientific: Singapore
  • Nakahara, M., (1990) Geometry, Topology and Physics, , CRC Press: Boca Raton, FL, USA
  • Aharonov, Y., Davidovich, L., Zagury, N., Quantum random walks (1993) Phys. Rev. A, 48, p. 1687
  • Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola, F., Mataloni, P., Anderson localization of entangled photons in an integrated quantum walk (2013) Nat. Photon, 7, pp. 322-328
  • Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A., Electric quantum walks with individual atoms (2013) Phys. Rev. Lett, 110
  • Obuse, H., Kawakami, N., Topological phases and delocalization of quantum walks in random environments (2011) Phys. Rev. B, 84
  • Shikano, Y., Chisaki, K., Segawa, E., Konno, N., Emergence of randomness and arrow of time in quantum walks (2010) Phys. Rev. A, 81
  • Asbóth, J.K., Symmetries, topological phases, and bound states in the one-dimensional quantum walk (2012) Phys. Rev. B, 86
  • Obuse, H., Asboth, J.K., Nishimura, Y., Kawakami, N., Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk (2015) Phys. Rev. B, 92
  • Cedzich, C., Grunbaum, F., Stahl, C., Velázquez, L., Werner, A., Werner, R., Bulk-edge correspondence of one-dimensional quantum walks (2016) J. Phys. A Math. Theor, 49
  • Wojcik, A., Luczak, T., Kurzynski, P., Grudka, A., Gdala, T., Bednarska-Bzdega, M., Trapping a particle of a quantum walk on the line (2012) Phys. Rev. A, 85
  • Moulieras, S., Lewenstein, M., Puentes, G., Entanglement engineering and topological protection in discrete-time quantum walks (2013) J. Phys. B, 46
  • Beenakker, C., Kouwenhoven, L.A., Road to reality with topological superconductors (2016) Nat. Phys, 12, pp. 618-621
  • Huber, S.D., Topological mechanics (2016) Nat. Phys, 12, pp. 621-623
  • Peano, V., Brendel, C., Schmidt, M., Marquardt, F., Topological Phases of Sound and Light, , Phys. Rev. X 2015, 5, 031011
  • Lu, L., Joannopoulos, J., Solijacic, M., Topological states in photonic systems (2016) Nat. Phys, 12, pp. 626-629
  • Xiao, M., Ma, G., Yang, Z., Sheng, P., Zhang, Z.Q., Chan, C.T., Geometric phase and band inversion in periodic acoustic systems (2015) Nat. Phys, 11, pp. 240-244
  • Bose, S., Quantum communication through an unmodulated spin chain (2003) Phys. Rev. Lett, 91
  • Christandl, M., Datta, N., Ekert, A., Landahl, A.J., Perfect state transfer in quantum spin networks (2004) Phys. Rev. Lett, 92
  • Plenio, M.B., Huelga, S.F., Dephasing-assisted transport: Quantum networks and biomolecules (2008) New J. Phys, 10
  • Spring, J., Boson sampling on a photonic chip (2013) Science, 339, pp. 798-801
  • Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G., Photonic boson sampling in a tunable circuit (2013) Science, 339, pp. 794-798
  • Tillmann, M., Dakic, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P., Experimental boson sampling (2013) Nat. Photon, 7, pp. 540-544
  • Crespi, A., Integrated multimode interferometers with arbitrary designs for photonic boson sampling (2013) Nat. Photon, 7, pp. 545-549
  • Spagnolo, N., Efficient experimental validation of photonic boson sampling against the uniform distribution (2014) Nat. Photon, 8, pp. 615-620
  • Carolan, J., On the experimental verification of quantum complexity in linear optics. Nat (2014) Photon, 8, pp. 621-626
  • Childs, A.M., Universal computation by quantum walk (2009) Phys. Rev. Lett, 102
  • Aiello, A., Puentes, G., Voigt, D., Woerdman, J.P., Maximally entangled mixed-state generation via local operations (2007) Phys. Rev. A, 75
  • Puentes, G., Voigt, D., Aiello, A., Woerdman, J.P., Universality in depolarized light scattering (2006) Opt. Lett, 30, pp. 3216-3218
  • Peruzzo, A., Quantum walks of correlated photons (2010) Science, 329, pp. 1500-1503
  • Poulios, K., Quantum walks of correlated photon pairs in two-dimensional waveguide arrays (2014) Phys. Rev. Lett, 332
  • Schreiber, A., Gabris, A., Rohde, P.P., Laiho, K., Stefanak, M., Potocek, V., Hamilton, C., Silberhorn, C., A 2D quantum walk simulation of two-particle dynamics (2012) Science, 336, pp. 55-58
  • Nielsen, M., Chuang, I., (2000) Quantum Computation and Quantum Information, , Cambridge University Press: Cambridge, UK
  • Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Mosley, P.J., Ersson, E., Jex, I., Silberhorn, C., Photons walking the line: A quantum walk with adjustable coin operations (2010) Phys. Rev. Lett, 104
  • Schreiber, A., Cassemiro, K.N., Potocek, V., Gabris, A., Jex, I., Silberhorn, C., Decoherence and disorder in quantum walks: From ballistic spread to localization (2011) Phys. Rev. Lett, 106
  • Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G., Discrete single-photon quantum walks with tunable decoherence (2010) Phys. Rev. Lett, 104
  • Zahringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F., Realization of a quantum walk with one and two trapped ions (2010) Phys. Rev. Lett, 104
  • Longhi, S., Zak phase of photons in optical waveguide lattices (2013) Opt. Lett, 38, pp. 3716-3719
  • Fruchart, M., Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk (2015) Phys. Rev. B, 92
  • Rudner, M.S., Lindner, N.H., Berg, E., Levin, M., Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems (2013) Phys. Rev. X, 3
  • Atala, M., Aidelsburger, M., Barreiro, J., Abanin, D., Kitagawa, T., Demler, E.I., Direct measurement of the Zak phase in topological Bloch bands (2013) Nat. Phys, 9, pp. 795-800
  • Loredo, J.C., Broome, M.A., Smith, D.H., White, A.G., Observation of entanglement-dependent two-particle holonomic phase (2014) Phys. Rev. Lett, 112
  • Brun, T.A., Carteret, H.A., Ambainis, A., Quantum to classical transition for random walks (2003) Phys. Rev. Lett, 91


---------- APA ----------
(2017) . Topology and holonomy in discrete-time quantum walks. Crystals, 7(5).
---------- CHICAGO ----------
Puentes, G. "Topology and holonomy in discrete-time quantum walks" . Crystals 7, no. 5 (2017).
---------- MLA ----------
Puentes, G. "Topology and holonomy in discrete-time quantum walks" . Crystals, vol. 7, no. 5, 2017.
---------- VANCOUVER ----------
Puentes, G. Topology and holonomy in discrete-time quantum walks. Crystals. 2017;7(5).