Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm) to small ones (1 mm), with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

Registro:

Documento: Artículo
Título:Effects of spatial sampling interval on roughness parameters and microwave backscatter over agricultural soil surfaces
Autor:Barber, M.E.; Grings, F.M.; álvarez-Mozos, J.; Piscitelli, M.; Perna, P.A.; Karszenbaum, H.
Filiación:Grupo de Teledetección Cuantitativa, Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Int. Guiraldez 2700, Buenos Aires, 1428, Argentina
Departamento de Proyectos e Ingeniería Rural, Universidad Pública de Navarra, Campus de Arrosadía, Pamplona, 31006, Spain
Cátedra de Conservación y Manejo de Suelos, Facultad de Agronomía, Universidad Nacional del Centro de la Pcia. de Buenos Aires (UNICEN), Gral. Pinto 399, Tandil, 7000, Argentina
Palabras clave:Correlation length; Height standard deviation; Laser profiler; Radar applications; Scattering models; Surface soil roughness; Agriculture; Backscattering; Parameter estimation; Soils; Surface roughness; Correlation lengths; Laser profilers; Radar applications; Scattering model; Standard deviation; Surface soil; Soil surveys
Año:2016
Volumen:8
Número:6
DOI: http://dx.doi.org/10.3390/rs8060458
Título revista:Remote Sensing
Título revista abreviado:Remote Sens.
ISSN:20724292
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20724292_v8_n6_p_Barber

Referencias:

  • Zheng, B., Campbell, J., Serbin, G., Galbraith, J., Remote sensing of crop residue and tillage practices: Present capabilities and future prospects (2014) Soil Tillage Res, 138, pp. 26-34
  • Dierking, W., Quantitative roughness characterization of geological surfaces and implications for radar signature analysis (1999) IEEE Trans. Geosci. Remote Sens, 37, pp. 2397-2412
  • Ulaby, F.T., Moore, R.K., Fung, A.K., Radar Remote Sensing and Surface Scattering and Emission Theory (1982) Microwave Remote Sensing: Active and Passive, 2. , Addison-Wesley: Reading, MA, USA
  • Beaudoin, A., Le Toan, T., Gwyn, Q., SAR observations and modeling of the C-band backscatter variability due to multiscale geometry and soil moisture (1990) IEEE Trans. Geosci. Remote Sens, 28, pp. 886-895
  • Shin, R.T., Kong, J.A., Scattering of electromagnetic waves from a randomly perturbed quasiperiodic surface (1984) J. Appl. Phys, 56, pp. 10-21
  • Oh, Y., Kay, Y.C., Condition for precise measurement of soil roughness (1998) IEEE Trans. Geosci. Remote Sens, 36, pp. 691-696
  • Davidson, M.W.J., Toan, T.L., Mattia, F., Satalino, G., Manninen, T., Borgeaud, M., On the characterization of agricultural soil roughness for radar remote sensing studies (2000) IEEE Trans. Geosci. Remote Sens, 38, pp. 630-640
  • Callens, M., Verhoest, N.E.C., Davidson, M.W.J., Parameterization of tillage-induced single-scale soil roughness from 4-m profiles (2006) IEEE Trans. Geosci. Remote Sens, 44, pp. 878-888
  • Alvarez-Mozos, J., Casali, J., Gonzalez-Audicana, M., Verhoest, N., Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation (2006) IEEE Trans. Geosci. Remote Sens, 44, pp. 913-924
  • Baghdadi, N., Cresson, R., Pottier, E., Aubert, M., Zribi, M., Jacome, A., Benabdallah, S., A potential use for the C-band polarimetric SAR parameters to characterize the soil surface over bare agriculture fields (2012) IEEE Trans. Geosci. Remote Sens, 50, pp. 3844-3858
  • Zribi, M., Chahbi, A., Shabou, M., Lili-Chabaane, Z., Duchemin, B., Baghdadi, N., Amri, R., Chehbouni, A., Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation (2011) Hydrol. Earth Syst. Sci, 15, pp. 345-358
  • Davidson, M.W.J., Mattia, F., Satalino, G., Verhoest, N., Le Toan, T., Borgeaud, M., Louis, J., Attema, E., Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements (2003) IEEE Trans. Geosci. Remote Sens, 41, pp. 1651-1658
  • Magagi, R., Berg, A., Goita, K., Belair, S., Jackson, T., Toth, B., Walker, A., Moghaddam, M., Canadian experiment for soil moisture in 2010 (CanEx-SM10): Overview and preliminary Results (2013) IEEE Trans. Geosci. Remote Sens, 51, pp. 347-363
  • McNairn, H., Jackson, T., Wiseman, G., Belair, S., Berg, A., Bullock, P., Colliander, A., Magagi, R., The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP soil moisture algorithms (2015) IEEE Trans. Geosci. Remote Sens, 53, pp. 2784-2801
  • Heald, M.A., Marion, J.B., (1980) Classical Electromagnetic Radiation, , Academic Press: New York, NY, USA, 2nd ed
  • Ogilvy, J.A., Foster, J.R., Rough surfaces: Gaussian or exponential statistics? (1989) J. Phys. D Appl. Phys, 22, p. 1243
  • Milenkovic, M., Pfeifer, N., Glira, P., Applying terrestrial laser scanning for soil surface roughness assessment (2015) Remote Sens, 7, pp. 2007-2045
  • Verhoest, N.E.C., Lievens, H., Wagner, W., Alvarez-Mozos, J., Moran, M.S., Mattia, F., On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar (2008) Sensors, 8, pp. 4213-4248
  • Darboux, F., Huang, C., An instantaneous-profile laser scanner to measure soil surface microtopography (2003) Soil Sci. Soc. Am. J, 67, pp. 92-99
  • Zhixiong, L., Nan, C., Perdok, U.D., Hoogmoed, W.B., Characterisation of soil profile roughness (2005) Biosyst. Eng, 91, pp. 369-377
  • Marzahn, P., Rieke-Zapp, D., Ludwig, R., Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system (2012) ISPRS J. Photogramm. Remote Sens, 72, pp. 80-89
  • Snapir, B., Hobbs, S., Waine, T., Roughness measurements over an agricultural soil surface with structure from motion (2014) J. Photogramm. Remote Sens, 96, pp. 210-223
  • Álvarez-Pérez, J.L., An extension of the IEM/IEMM surface scattering model (2001) Waves Random Media, 11, pp. 307-329
  • Álvarez-Pérez, J.L., The IEM2M rough-surface scattering model for complex-permittivity scattering media (2012) Waves Random Complex Media, 22, pp. 207-233
  • MacKay, D.J.C., (2003) Information Theory, Inference, and Learning Algorithms, , Cambridge University Press: Cambridge, UK
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (1992) Numerical Recipes in C: The Art of Scientific Computing, , Cambridge University Press: Cambridge, UK, 2nd ed
  • Baghdadi, N., Zribi, M., Loumagne, C., Ansart, P., Anguela, T.P., Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields (2008) Remote Sens. Environ, 112, pp. 4370-4379
  • Fung, A.K., (1994) Microwave Scattering and Emission Models and Their Applications, The Artech House Remote Sensing library, , Artech House: Norwood, Massachusetts
  • Engman, E.T., Wang, J.R., Evaluating roughness models of radar backscatter (1987) IEEE Trans. Geosci. Remote Sens, 25, pp. 709-713
  • Álvarez-Mozos, J., Verhoest, N.E., Larrañaga, A., Casalí, J., González-Audícana, M., Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations (2009) Sensors, 9, pp. 463-489
  • Zribi, M., Baghdadi, N., Holah, N., Fafin, O., New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion (2005) Remote Sens. Environ, 96, pp. 485-496

Citas:

---------- APA ----------
Barber, M.E., Grings, F.M., álvarez-Mozos, J., Piscitelli, M., Perna, P.A. & Karszenbaum, H. (2016) . Effects of spatial sampling interval on roughness parameters and microwave backscatter over agricultural soil surfaces. Remote Sensing, 8(6).
http://dx.doi.org/10.3390/rs8060458
---------- CHICAGO ----------
Barber, M.E., Grings, F.M., álvarez-Mozos, J., Piscitelli, M., Perna, P.A., Karszenbaum, H. "Effects of spatial sampling interval on roughness parameters and microwave backscatter over agricultural soil surfaces" . Remote Sensing 8, no. 6 (2016).
http://dx.doi.org/10.3390/rs8060458
---------- MLA ----------
Barber, M.E., Grings, F.M., álvarez-Mozos, J., Piscitelli, M., Perna, P.A., Karszenbaum, H. "Effects of spatial sampling interval on roughness parameters and microwave backscatter over agricultural soil surfaces" . Remote Sensing, vol. 8, no. 6, 2016.
http://dx.doi.org/10.3390/rs8060458
---------- VANCOUVER ----------
Barber, M.E., Grings, F.M., álvarez-Mozos, J., Piscitelli, M., Perna, P.A., Karszenbaum, H. Effects of spatial sampling interval on roughness parameters and microwave backscatter over agricultural soil surfaces. Remote Sens. 2016;8(6).
http://dx.doi.org/10.3390/rs8060458