Artículo

Reilly, A.M.; Cooper, R.I.; Adjiman, C.S.; Bhattacharya, S.; Boese, A.D.; Brandenburg, J.G.; Bygrave, P.J.; Bylsma, R.; Campbell, J.E.; Car, R.; Case, D.H.; Chadha, R.; Cole, J.C.; Cosburn, K.; Cuppen, H.M.; Curtis, F.; Day, G.M.; DiStasio, R.A., Jr. (...) Groom, C.R. "Report on the sixth blind test of organic crystal structure prediction methods" (2016) Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 72(4):439-459
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and 'best practices' for performing CSP calculations. All of the targets, apart from a single potentially disordered Z′ = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms.The results of the sixth blind test of organic crystal structure prediction methods are presented and discussed, highlighting progress for salts, hydrates and bulky flexible molecules, as well as on-going challenges. © Anthony M. Reilly et al. 2016.

Registro:

Documento: Artículo
Título:Report on the sixth blind test of organic crystal structure prediction methods
Autor:Reilly, A.M.; Cooper, R.I.; Adjiman, C.S.; Bhattacharya, S.; Boese, A.D.; Brandenburg, J.G.; Bygrave, P.J.; Bylsma, R.; Campbell, J.E.; Car, R.; Case, D.H.; Chadha, R.; Cole, J.C.; Cosburn, K.; Cuppen, H.M.; Curtis, F.; Day, G.M.; DiStasio, R.A., Jr.; Dzyabchenko, A.; Van Eijck, B.P.; Elking, D.M.; Van Den Ende, J.A.; Facelli, J.C.; Ferraro, M.B.; Fusti-Molnar, L.; Gatsiou, C.-A.; Gee, T.S.; De Gelder, R.; Ghiringhelli, L.M.; Goto, H.; Grimme, S.; Guo, R.; Hofmann, D.W.M.; Hoja, J.; Hylton, R.K.; Iuzzolino, L.; Jankiewicz, W.; De Jong, D.T.; Kendrick, J.; De Klerk, N.J.J.; Ko, H.-Y.; Kuleshova, L.N.; Li, X.; Lohani, S.; Leusen, F.J.J.; Lund, A.M.; Lv, J.; Ma, Y.; Marom, N.; Masunov, A.E.; McCabe, P.; McMahon, D.P.; Meekes, H.; Metz, M.P.; Misquitta, A.J.; Mohamed, S.; Monserrat, B.; Needs, R.J.; Neumann, M.A.; Nyman, J.; Obata, S.; Oberhofer, H.; Oganov, A.R.; Orendt, A.M.; Pagola, G.I.; Pantelides, C.C.; Pickard, C.J.; Podeszwa, R.; Price, L.S.; Price, S.L.; Pulido, A.; Read, M.G.; Reuter, K.; Schneider, E.; Schober, C.; Shields, G.P.; Singh, P.; Sugden, I.J.; Szalewicz, K.; Taylor, C.R.; Tkatchenko, A.; Tuckerman, M.E.; Vacarro, F.; Vasileiadis, M.; Vazquez-Mayagoitia, A.; Vogt, L.; Wang, Y.; Watson, R.E.; De Wijs, G.A.; Yang, J.; Zhu, Q.; Groom, C.R.
Filiación:Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, United Kingdom
Chemical Crystallography, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, United Kingdom
Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
Fritz-Haber- Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, 14195, Germany
Department of Chemistry, Institute of Physical and Theoretical Chemistry, University of Graz, Heinrichstraße 28/IV, Graz, 8010, Austria
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn, 53115, Germany
School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, Nijmegen, 6525 AJ, Netherlands
Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, United States
Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
Karpov Institute of Physical Chemistry, Moscow, Russian Federation
Utrecht University, Netherlands
OpenEye Scientific Software, 9 Bisbee Court, Santa Fe, NM 87508, United States
Center for High Performance Computing, University of Utah, 155 South 1452, Salt Lake City, UT 84112-0190, United States
Department of Biomedical Informatics, University of Utah, 155 South 1452, Salt Lake City, UT 84112-0190, United States
Departamento de Física and Ifiba (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina
Educational Programs on Advanced Simulation Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
Department of Computer Science and Engineering, Graduate School of Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
CRS4, Parco Scientifico e Tecnologico, POLARIS, Edificio 1, PULA, 09010, Italy
FlexCryst, Schleifweg 23, Uttenreuth, 91080, Germany
Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-006, Poland
Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, United Kingdom
Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, United States
Department of Chemistry, University of Utah, 155 South 1452, Salt Lake City, UT 84112-0190, United States
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826, United States
Department of Chemistry, University of Central Florida, 4111 Libra Drive PSB225, Orlando, FL 32816, United States
Department of Physics, University of Central Florida, 4111 Libra Drive PSB430, Orlando, FL 32816, United States
Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow, 115409, Russian Federation
Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, United States
School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, United Kingdom
Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
Cavendish Laboratory, 19, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, United States
Avant-garde Materials Simulation, Germany
Chr. for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
Department of Geosciences, Center for Materials by Design, Institute for Advanced Computational Science, SUNY, Stony Brook, NY 11794-2100, United States
Skolkovo Institute of Science and Technology, Skolkovo Innovation Centers, Bldg. 3, Moscow Region, 143026, Russian Federation
Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation
International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
Department of Physics and Astronomy, University College London, Gower St., London, WC1E 6BT, United Kingdom
Department of Chemistry, New York University, New York, NY 10003, United States
Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, L-1511, Luxembourg
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States
NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
Department of Chemistry, Loyola University, New Orleans, LA 70118, United States
Department of Chemistry, London Centre for Nanotechnology, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
Palabras clave:Cambridge Structural Database; crystal structure prediction; lattice energies; polymorphism; Forecasting; Hydrates; Hydration; Molecules; Polymorphism; Salts; Cambridge Structural Databases; Crystal structure prediction; Density functional approximations; Flexible molecules; Hierarchical approach; Lattice energies; Organic crystal structure prediction; Prediction methods; Crystal structure
Año:2016
Volumen:72
Número:4
Página de inicio:439
Página de fin:459
DOI: http://dx.doi.org/10.1107/S2052520616007447
Título revista:Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
Título revista abreviado:Acta Crystallogr. Sect. B Struct. Sci. Crys. Eng. Mater.
ISSN:20525192
CODEN:ACSBD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20525192_v72_n4_p439_Reilly

Referencias:

  • Adamo, C., Barone, V., (1999) J. Chem. Phys, 110, pp. 6158-6170
  • Ambrosetti, A., Reilly, A.M., DiStasio, R.A., Jr., Tkatchenko, A., (2014) J. Chem. Phys, 140
  • Anwar, J., Zahn, D., (2011) Angew. Chem. Int. Ed, 50, pp. 1996-2013
  • Augelli-Szafran, C., (2002) WO Patent App. PCT/US2000/015, p. 071
  • Axilrod, B.M., Teller, E., (1943) J. Chem. Phys, 11, pp. 299-300
  • Baias, M., Dumez, J.-N., Svensson, P.H., Schantz, S., Day, G.M., Emsley, L., (2013) J. Am. Chem. Soc, 135, pp. 17501-17507
  • Bardwell, D.A., Adjiman, C.S., Arnautova, Y.A., Bartashevich, E., Boerrigter, S.X.M., Braun, D.E., Cruz-Cabeza, A.J., Zhitkov, I.K., (2011) Acta Cryst, B67, pp. 535-551
  • Becke, A.D., (1988) Phys. Rev. A, 38, pp. 3098-3100
  • Becke, A.D., Johnson, E.R., (2007) J. Chem. Phys, 127
  • Bhardwaj, R.M., Price, L.S., Price, S.L., Reutzel-Edens, S.M., Miller, G.J., Oswald, I.D.H., Johnston, B.F., Florence, A.J., (2013) Cryst. Growth des, 13, pp. 1602-1617
  • Blagden, N., Davey, R.J., (2003) Cryst. Growth des, 3, pp. 873-885
  • Boerrigter, S.X.M., Josten, G.P.H., Van De Streek, J., Hollander, F.F.A., Los, J., Cuppen, H.M., Bennema, P., Meekes, H., (2004) J. Phys. Chem. A, 108, pp. 5894-5902
  • Born, M., Huang, K., (1954) Dynamical Theory of Crystal Lattices. International Series of Monographs on Physics, , Oxford: Clarendon Press
  • Brandenburg, J.G., Grimme, S., (2014) Top. Curr. Chem, 345, pp. 1-23
  • Bruno, I.J., Cole, J.C., Kessler, M., Luo, J., Motherwell, W.D.S., Purkis, L.H., Smith, B.R., Orpen, A.G., (2004) J. Chem. Inf. Comput. Sci, 44, pp. 2133-2144
  • Bygrave, P.J., Allan, N.L., Manby, F.R., (2012) J. Chem. Phys, 137
  • Case, D.H., Campbell, J.E., Bygrave, P.J., Day, G.M., (2016) J. Chem. Theory Comput, 12, pp. 910-924
  • Chisholm, J.A., Motherwell, S., (2005) J. Appl. Cryst, 38, pp. 228-231
  • Cohen, A.J., Mori-Sánchez, P., Yang, W., (2008) Science, 321, pp. 792-794
  • Cohen, A.J., Mori-Sánchez, P., Yang, W., (2012) Chem. Rev, 112, pp. 289-320
  • Cruz-Cabeza, A.J., Bernstein, J., (2014) Chem. Rev, 114, pp. 2170-2191
  • Cruz-Cabeza, A.J., Liebeschuetz, J.W., Allen, F.H., (2012) CrystEngComm, 14, pp. 6797-6811
  • Day, G.M., Cooper, T.G., Cruz-Cabeza, A.J., Hejczyk, K.E., Ammon, H.L., Boerrigter, S.X.M., Tan, J.S., Schweizer, B., (2009) Acta Cryst, B65, pp. 107-125
  • Day, G.M., Motherwell, W.D.S., Ammon, H.L., Boerrigter, S.X.M., Della Valle, R.G., Venuti, E., Dzyabchenko, A., Verwer, P., (2005) Acta Cryst, B61, pp. 511-527
  • Deij, M.A., Ter Horst, J.H., Meekes, H., Jansens, P., Vlieg, E., (2007) J. Phys. Chem. B, 111, pp. 1523-1530
  • Del Ben, M., Hutter, J., VandeVondele, J., (2012) J. Chem. Theory Comput, 8, pp. 4177-4188
  • Della Valle, R.G., Venuti, E., Brillante, A., Girlando, A., (2008) J. Phys. Chem. A, 112, pp. 6715-6722
  • Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004) Phys. Rev. Lett, 92
  • Dove, M., (1993) Introduction to Lattice Dynamics. Cambridge Topics in Mineral Physics and Chemistry, , Cambridge University Press
  • Eddleston, M.D., Hejczyk, K.E., Bithell, E.G., Day, G.M., Jones, W., (2013) Chem. Eur. J, 19, pp. 7874-7882
  • Eijck, B.P., Van Mooij, W.T.M., Kroon, J., (2001) J. Comput. Chem, 22, pp. 805-815
  • Eijck, B.P., Van Mooij, W.T.M., Kroon, J., (2001) J. Phys. Chem. B, 105, pp. 10573-10578
  • Etter, M.C., MacDonald, J.C., Bernstein, J., (1990) Acta Cryst, B46, pp. 256-262
  • Foxman, B.M., (2016) CSD Communication: CCDC 1447530
  • Galek, P.T.A., Allen, F.H., Fábián, L., Feeder, N., (2009) CrystEngComm, 11, pp. 2634-2639
  • Galek, P.T.A., Fábián, L., Motherwell, W.D.S., Allen, F.H., Feeder, N., (2007) Acta Cryst, B63, pp. 768-782
  • De, G.R., Wehrens, R., Hageman, J.A., (2001) J. Comput. Chem, 22, pp. 273-289
  • Goto, H., Osawa, E., (1989) J. Am. Chem. Soc, 111, pp. 8950-8951
  • Goto, H., Osawa, E., (1993) J. Chem. Soc. Perkin Trans, 2, pp. 187-198
  • Grimme, S., (2006) J. Comput. Chem, 27, pp. 1787-1799
  • Grimme, S., (2014) J. Chem. Theory Comput, 10, pp. 4497-4514
  • Grimme, S., Antony, J., Ehrlich, S., Krieg, H., (2010) J. Chem. Phys, 132
  • Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C., (2016) Acta Cryst, B72, pp. 171-179
  • Groom, C.R., Reilly, A.M., (2014) Acta Cryst, B70, pp. 776-777
  • Habgood, M., Grau-Crespo, R., Price, S.L., (2011) Phys. Chem. Chem. Phys, 13, pp. 9590-9600
  • Habgood, M., Sugden, I., Kazantsev, A.V., Adjiman, C.S., Pantelides, C.C., (2015) J. Chem. Theory Comput, 11, pp. 1957-1969
  • Hofmann, D.W.M., Kuleshova, L., (2005) J. Appl. Cryst, 38, pp. 861-866
  • Horton, P.N., Gossel, M.C., (2016) CSD Communication: CCDC 1451239
  • Ismail, S.Z., Anderton, C.L., Copley, R.C.B., Price, L.S., Price, S.L., (2013) Cryst. Growth des, 13, pp. 2396-2406
  • Kazantsev, A.V., Karamertzanis, P.G., Adjiman, C.S., Pantelides, C.C., (2011) J. Chem. Theory Comput, 7, pp. 1998-2016
  • Klimeš, J., Bowler, D.R., Michaelides, A., (2011) Phys. Rev. B, 83
  • Klimeš, J., Michaelides, A., (2012) J. Chem. Phys, 137
  • Kolossváry, I., Guida, W.C., (1996) J. Am. Chem. Soc, 118, pp. 5011-5019
  • Kronik, L., Tkatchenko, A., (2014) Acc. Chem. Res, 47, pp. 3208-3216
  • Kuleshova, L., Hofmann, D., Boese, R., (2013) Chem. Phys. Lett, 564, pp. 26-32
  • Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, pp. 785-789
  • Lommerse, J.P.M., Motherwell, W.D.S., Ammon, H.L., Dunitz, J.D., Gavezzotti, A., Hofmann, D.W.M., Leusen, F.J.J., Williams, D.E., (2000) Acta Cryst, B56, pp. 697-714
  • Lund, A.M., Pagola, G.I., Orendt, A.M., Ferraro, M.B., Facelli, J.C., (2015) Chem. Phys. Lett, 626, pp. 20-24
  • Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Wood, P.A., (2008) J. Appl. Cryst, 41, pp. 466-470
  • Marom, N., DiStasio, R.A., Jr., Atalla, V., Levchenko, S., Reilly, A.M., Chelikowsky, J.R., Leiserowitz, L., Tkatchenko, A., (2013) Angew. Chem. Int. Ed, 52, pp. 6629-6632
  • Misquitta, A.J., Podeszwa, R., Jeziorski, B., Szalewicz, K., (2005) J. Chem. Phys, 123
  • Moellmann, J., Grimme, S., (2014) J. Phys. Chem. C, 118, pp. 7615-7621
  • Mohamed, S., Tocher, D.A., Price, S.L., (2011) Int. J. Pharm, 418, pp. 187-198
  • Monserrat, B., Drummond, N.D., Needs, R.J., (2013) Phys. Rev. B, 87
  • Motherwell, W.D.S., Ammon, H.L., Dunitz, J.D., Dzyabchenko, A., Erk, P., Gavezzotti, A., Hofmann, D.W.M., Williams, D.E., (2002) Acta Cryst, B58, pp. 647-661
  • Neumann, M.A., (2008) J. Phys. Chem. B, 112, pp. 9810-9829
  • Neumann, M.A., Leusen, F.J.J., Kendrick, J., (2008) Angew. Chem. Int. Ed, 47, pp. 2427-2430
  • Neumann, M.A., Perrin, M.-A., (2005) J. Phys. Chem. B, 109, pp. 15531-15541
  • Neumann, M.A., Van De Streek, J., Fabbiani, F.P.A., Hidber, P., Grassmann, O., (2015) Nat. Commun, 6, p. 7793
  • Nyman, J., Day, G.M., (2015) CrystEngComm, 17, pp. 5154-5165
  • Obata, S., Goto, H., (2015) AIP Conf. Proc, 1649, pp. 130-134
  • Oganov, A.R., Valle, M., (2009) J. Chem. Phys, 130
  • Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Ceder, G., (2013) Comput. Mater. Sci, 68, pp. 314-319
  • Otero-De-La-Roza, A., Johnson, E.R., (2012) J. Chem. Phys, 136
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, pp. 3865-3868
  • Piana, S., Reyhani, M., Gale, J.D., (2005) Nature, 438, pp. 70-73
  • Price, S.L., (2009) Acc. Chem. Res, 42, pp. 117-126
  • Price, S.L., (2013) Acta Cryst, B69, pp. 313-328
  • Price, S.L., (2014) Chem. Soc. Rev, 43, pp. 2098-2111
  • Price, S.L., Leslie, M., Welch, G.W.A., Habgood, M., Price, L.S., Karamertzanis, P.G., Day, G.M., (2010) Phys. Chem. Chem. Phys, 12, pp. 8478-8490
  • Pyzer-Knapp, E.O., Thompson, H.P.G., Schiffmann, F., Jelfs, K.E., Chong, S.Y., Little, M.A., Cooper, A.I., Day, G.M., (2014) Chem. Sci, 5, pp. 2235-2245
  • Reilly, A.M., Tkatchenko, A., (2013) J. Chem. Phys, 139
  • Reilly, A.M., Tkatchenko, A., (2014) Phys. Rev. Lett, 113
  • Reilly, A.M., Tkatchenko, A., (2015) Chem. Sci, 6, pp. 3289-3301
  • Risthaus, T., Grimme, S., (2013) J. Chem. Theory Comput, 9, pp. 1580-1591
  • Salvalaglio, M., Vetter, T., Giberti, F., Mazzotti, M., Parrinello, M., (2012) J. Am. Chem. Soc, 134, pp. 17221-17233
  • Samas, B., (2015) Personal Communication
  • Samas, B., (2016) CSD Communication: CCDC 1447522
  • Samas, B., (2016) CSD Communication: CCDC 1447523
  • Samas, B., (2016) CSD Communication: CCDC 1447524
  • Samas, B., (2016) CSD Communication: CCDC 1447525
  • Samas, B., (2016) CSD Communication: CCDC 1447526
  • Sharp, E., (2016) Preparation
  • Simons, L.J., Caprathe, B.W., Callahan, M., Graham, J.M., Kimura, T., Lai, Y., LeVine, H., III, Augelli-Szafran, C.E., (2009) Bioorg. Med. Chem. Lett, 19, pp. 654-657
  • Sobol, I., (1967) USSR Comput. Math. Math. Phys, 7, pp. 86-112
  • Spek, A.L., (2009) Acta Cryst, D65, pp. 148-155
  • (2015) Spglib, , http://atztogo.github.io/spglib/
  • Stokes, H.T., Hatch, D.M., (2005) J. Appl. Cryst, 38, pp. 237-238
  • Stone, A.J., (2005) J. Chem. Theory Comput, 1, pp. 1128-1132
  • Stone, A.J., (2013) The Theory of Intermolecular Forces, , 2nd ed. Oxford University Press
  • Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E., (2003) Phys. Rev. Lett, 91
  • Thompson, H.P.G., Day, G.M., (2014) Chem. Sci, 5, pp. 3173-3182
  • Threlfall, T., (2003) Org. Process Res. Dev, 7, pp. 1017-1027
  • Tkatchenko, A., DiStasio, R.A., Jr., Car, R., Scheffler, M., (2012) Phys. Rev. Lett, 108
  • Tkatchenko, A., Scheffler, M., (2009) Phys. Rev. Lett, 102
  • Verwer, P., Leusen, F.J.J., Computer Simulation to Predict Possible Crystal Polymorphs (1998) Reviews in Computational Chemistry, 12, pp. 327-365. , New York: John Wiley and Sons, Inc
  • Wang, Y., Lv, J., Zhu, L., Ma, Y., (2012) Comput. Phys. Commun, 183, pp. 2063-2070
  • Wen, S., Beran, G.J.O., (2011) J. Chem. Theory Comput, 7, pp. 3733-3742
  • Wen, S., Beran, G.J.O., (2012) Cryst. Growth des, 12, pp. 2169-2172
  • Wen, S., Beran, G.J.O., (2012) J. Chem. Theory Comput, 8, pp. 2698-2705
  • Wheeler, K.A., Breen, M.E., (2016) CSD Communication: CCDC 1447527
  • Wheeler, K.A., Breen, M.E., (2016) CSD Communication: CCDC 1447528
  • Wheeler, K.A., Hopkins, G.W., (2016) CSD Communication: CCDC 1447529
  • Yang, J., Hu, W., Usvyat, D., Matthews, D., Schütz, M., Chan, G.K.-L., (2014) Science, 345, pp. 640-643
  • Yu, T.-Q., Tuckerman, M.E., (2011) Phys. Rev. Lett, 107
  • Zhu, Q., Oganov, A.R., Glass, C.W., Stokes, H.T., (2012) Acta Cryst, B68, pp. 215-226

Citas:

---------- APA ----------
Reilly, A.M., Cooper, R.I., Adjiman, C.S., Bhattacharya, S., Boese, A.D., Brandenburg, J.G., Bygrave, P.J.,..., Groom, C.R. (2016) . Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 72(4), 439-459.
http://dx.doi.org/10.1107/S2052520616007447
---------- CHICAGO ----------
Reilly, A.M., Cooper, R.I., Adjiman, C.S., Bhattacharya, S., Boese, A.D., Brandenburg, J.G., et al. "Report on the sixth blind test of organic crystal structure prediction methods" . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 72, no. 4 (2016) : 439-459.
http://dx.doi.org/10.1107/S2052520616007447
---------- MLA ----------
Reilly, A.M., Cooper, R.I., Adjiman, C.S., Bhattacharya, S., Boese, A.D., Brandenburg, J.G., et al. "Report on the sixth blind test of organic crystal structure prediction methods" . Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 72, no. 4, 2016, pp. 439-459.
http://dx.doi.org/10.1107/S2052520616007447
---------- VANCOUVER ----------
Reilly, A.M., Cooper, R.I., Adjiman, C.S., Bhattacharya, S., Boese, A.D., Brandenburg, J.G., et al. Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr. Sect. B Struct. Sci. Crys. Eng. Mater. 2016;72(4):439-459.
http://dx.doi.org/10.1107/S2052520616007447