Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63Å resolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-Terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-Terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5Å from the molecular surface and located ∼14.1Å away from T1CuN; T1CuN and T2Cu are ∼12.6Å apart. All these distances are compatible with an electron-Transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments. © 2019.


Documento: Artículo
Título:A three-domain copper-nitrite reductase with a unique sensing loop
Autor:Opperman, D.J.; Murgida, D.H.; Dalosto, S.D.; Brondino, C.D.; Ferroni, F.M.
Filiación:Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, Free State, 9300, South Africa
Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Universidad de Buenos Aires, Pab. 2 piso 1, Buenos Aires, Buenos Aires, C1428EHA, Argentina
Instituto de Física Del Litoral, CONICET-UNL, Güemes 3450, Santa Fe, Santa Fe, S3000ZAA, Argentina
Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (UNL), Paraje El Pozo, Santa Fe, Santa Fe, S3000ZAA, Argentina
Palabras clave:Ser; Thermus scotoductus SA-01; three-domain copper-nitrite reductase; X-ray crystal structure
Página de inicio:248
Página de fin:258
Título revista:IUCrJ
Título revista abreviado:IUCrJ


  • Abraham, Z.H.L., Lowe, D.J., Smith, B.E., (1993) Biochem. J, 295, pp. 587-593
  • Adman, E.T., Godden, J.W., Turley, S., (1995) J. Biol. Chem, 270, pp. 27458-27474
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., (1990) J. Mol. Biol, (215), pp. 403-410
  • Andrew, C.R., Yeom, H., Valentine, J.S., Karlsson, B.G., Van Pouderoyen, G., Canters, G.W., Loehr, T.M., Bonander, N., (1994) J. Am. Chem. Soc, 116, pp. 11489-11498
  • Antonyuk, S.V., Han, C., Eady, R.R., Hasnain, S.S., (2013) Nature, 496, pp. 123-126
  • Borgonie, G., García-Moyano, A., Litthauer, D., Bert, W., Bester, A., Van Heerden, E., Möller, C., Onstott, T.C., (2011) Nature, (474), pp. 79-82
  • Boulanger, M.J., Murphy, M.E.P., (2009) Protein Sci, 12, pp. 248-256
  • Boulanger, M.J., Kukimoto, M., Nishiyama, M., Horinouchi, S., Murphy, M.E.P., (2000) J. Biol. Chem, 275, pp. 23957-23964
  • Boulanger, M.J., Murphy, M.E.P., (2001) Biochemistry, 40, pp. 9132-9141
  • Boulanger, M.J., Murphy, M.E.P., (2002) J. Mol. Biol, 315, pp. 1111-1127
  • Bradford, M.M., (1976) Anal Biochem, 72, pp. 248-254
  • Brenner, S., Heyes, D.J., Hay, S., Hough, M.A., Eady, R.R., Hasnain, S.S., Scrutton, N.S., (2009) J. Biol. Chem, 284, pp. 25973-25983
  • Bueno, E., Bedmar, E.J., Richardson, D.J., Delgado, M.J., (2008) FEMS Microbiol. Lett, 279, pp. 188-194
  • Buning, C., Canters, G.W., Comba, P., Dennison, C., Jeuken, L., Melter, M., Sanders-Loehr, J., (2000) J. Am. Chem. Soc, 122, pp. 204-211
  • Chai, J.-D., Head-Gordon, M., (2008) Phys. Chem. Chem. Phys, 10, pp. 6615-6620
  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J. Am. Chem. Soc, 117, pp. 5179-5197
  • Cristaldi, J.C., Gómez, M.C., González, P.J., Ferroni, F.M., Dalosto, S.D., Rizzi, A.C., Rivas, M.G., Brondino, C.D., (2018) Biochim. Biophys. Acta, (1862), pp. 752-760
  • Debeer George, S., Basumallick, L., Szilagyi, R.K., Randall, D.W., Hill, M.G., Nersissian, A.M., Valentine, J.S., Solomon, E.I., (2003) J. Am. Chem. Soc, 125, pp. 11314-11328
  • Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J., (2006) Nucleic Acids Res, 34, pp. W116-W118
  • Ellis, M.J., Grossmann, J.G., Eady, R.R., Hasnain, S.S., (2007) J. Biol. Inorg. Chem, 12, pp. 1119-1127
  • Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K., (2010) Acta Cryst D, 66, pp. 486-501
  • Evans, P., (2006) Acta Cryst D, 62, pp. 72-82
  • Evans, P.R., Murshudov, G.N., (2013) Acta Cryst D, 69, pp. 1204-1214
  • Felsenstein, J., (1985) Evolution, 39, pp. 783-791
  • Ferroni, F.M., Guerrero, S.A., Rizzi, A.C., Brondino, C.D., (2012) J. Inorg. Biochem, 114, pp. 8-14
  • Ferroni, F.M., Marangon, J., Neuman, N.I., Cristaldi, J.C., Brambilla, S.M., Guerrero, S.A., Rivas, M.G., Brondino, C.D., (2014) J. Biol. Inorg. Chem, (19), pp. 913-921
  • Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Voss, M., (2014) Philos. Trans. R. Soc. B Biol. Sci, 368, p. 20130164
  • Fukuda, Y., Koteishi, H., Yoneda, R., Tamada, T., Takami, H., Inoue, T., Nojiri, M., (2014) Biochim. Biophys. Acta, 1837, pp. 396-405
  • Fukuda, Y., Tse, K.M., Lintuluoto, M., Fukunishi, Y., Mizohata, E., Matsumura, H., Takami, H., Inoue, T., (2014) J. Biochem, 155, pp. 123-135
  • Fukuda, Y., Tse, K.M., Suzuki, M., Diederichs, K., Hirata, K., Nakane, T., Sugahara, M., Mizohata, E., (2016) J. Biochem, 159, pp. 527-538
  • Gounder, K., Brzuszkiewicz, E., Liesegang, H., Wollherr, A., Daniel, R., Gottschalk, G., Reva, O., Litthauer, D., (2011) BMC Genomics, (12), pp. 577-577
  • Gruber, N., Galloway, J.N., (2008) Nature, 451, pp. 293-296
  • Han, C., Wright, G.S., Fisher, K., Rigby, S.E., Eady, R.R., Hasnain, S.S., (2012) Biochem. J, 444, pp. 219-226
  • Han, J., Adman, E.T., Beppu, T., Codd, R., Freeman, H.C., Huq, L., Loehr, T.M., Sanders-Loehr, J., (1991) Biochemistry, 30, pp. 10904-10913
  • Han, J., Loehr, T.M., Lu, Y., Valentine, J.S., Averill, B.A., Sanders-Loehr, J., (1993) J. Am. Chem. Soc, 115, pp. 4256-4263
  • Holm, R.H., Kennepohl, P., Solomon, E.I., (1996) Chem. Rev, (96), pp. 2239-2314
  • Horrell, S., Kekilli, D., Strange, R.W., Hough, M.A., (2017) Metallomics, (9), pp. 1470-1482
  • Hough, M.A., Eady, R.R., Hasnain, S.S., (2008) Biochemistry, 47, pp. 13547-13553
  • Hough, M.A., Ellis, M.J., Antonyuk, S., Strange, R.W., Sawers, G., Eady, R.R., Hasnain, S.S., (2005) J. Mol. Biol, 350, pp. 300-309
  • Kabsch, W., (2010) Acta Cryst D, 66, pp. 125-132
  • Kataoka, K., Furusawa, H., Takagi, K., Yamaguchi, K., Suzuki, S., (2000) J. Biochem, 127, pp. 345-350
  • Kataoka, K., Yamaguchi, K., Sakai, S., Takagi, K., Suzuki, S., (2003) Biochem. Biophys. Res. Commun, 303, pp. 519-524
  • Klotz, I.M., Klotz, T.A., (1955) Science, 121, pp. 477-480
  • Kumar, S., Stecher, G., Tamura, K., (2016) Mol. Biol. Evol, 33, pp. 1870-1874
  • Laemmli, U.K., Beguin, F., Gujer-Kellenberger, G., (1970) J. Mol. Biol, 47, pp. 69-85
  • Leferink, N.G.H., Han, C., Antonyuk, S.V., Heyes, D.J., Rigby, S.E.J., Hough, M.A., Eady, R.R., Hasnain, S.S., (2011) Biochemistry, 50, pp. 4121-4131
  • Lipman, D.J., Pearson, W.R., (1985) Science, 227, pp. 1435-1441
  • Magnabosco, C., Tekere, M., Lau, M.C.Y., Linage, B., Kuloyo, O., Erasmus, M., Cason, E., Onstott, T.C., (2014) Front. Microbiol, (5), p. 679
  • McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J., (2007) J. Appl. Cryst, 40, pp. 658-674
  • Merkle, A.C., Lehnert, N., (2009) Inorg. Chem, 48, pp. 11504-11506
  • Merkle, A.C., Lehnert, N., (2012) Dalton Trans, 41, pp. 3355-3368
  • Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Vagin, A.A., (2011) Acta Cryst D, 67, pp. 355-367
  • Murugapiran, S.K., Huntemann, M., Wei, C.-L., Han, J., Detter, J.C., Han, C., Erkkila, T.H., Hedlund, B.P., (2013) Stand. Genomic Sci, 7, pp. 449-468
  • Nersissian, A.M., Mehrabian, Z.B., Nalbandyan, R.M., Hart, P.J., Fraczkiewicz, G., Czernuszewicz, R.S., Bender, C.J., Valentine, J.S., (1996) Protein Sci, 5, pp. 2184-2192
  • Nestor, L., Larrabee, J.A., Woolery, G., Reinhammar, B., Spiro, T.G., (1984) Biochemistry, 23, pp. 1084-1093
  • Nojiri, M., (2017) Metalloenzymes in Denitrification: Applications and Environmental Impacts, pp. 91-113. , ch. 5. London: The Royal Society of Chemistry
  • Nojiri, M., Koteishi, H., Nakagami, T., Kobayashi, K., Inoue, T., Yamaguchi, K., Suzuki, S., (2009) Nature, 462, pp. 117-120
  • Nojiri, M., Xie, Y., Inoue, T., Yamamoto, T., Matsumura, H., Kataoka, K., Deligeer Yamaguchi, K., Suzuki, S., (2007) Proc. Natl Acad. Sci. USA, 104, pp. 4315-4320
  • Okubo, T., Fukushima, S., Itakura, M., Oshima, K., Longtonglang, A., Teaumroong, N., Mitsui, H., Minamisawa, K., (2013) Appl. Environ. Microbiol, 79, pp. 2542-2551
  • Pérez-Henarejos, S.A., Alcaraz, L.A., Donaire, A., (2015) Arch. Biochem. Biophys, 584, pp. 134-148
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., (2004) J. Comput. Chem, 25, pp. 1605-1612
  • Qin, X., Deng, L., Hu, C., Li, L., Chen, X., (2017) Chem. Eur. J, 23, pp. 14900-14910
  • Sharma, K.D., Loehr, T.M., Sanders-Loehr, J., Husain, M., Davidson, V.L., (1988) J. Biol. Chem, 263, pp. 3303-3306
  • Stoll, S., Schweiger, A., (2006) J. Magn. Reson, 178, pp. 42-55
  • Strange, R.W., Murphy, L.M., Dodd, F.E., Abraham, Z.H.L., Eady, R.R., Smith, B.E., Hasnain, S.S., (1999) J. Mol. Biol, 287, pp. 1001-1009
  • Studier, F.W., (2005) Protein Expr Purif, 41, pp. 207-234
  • Tocheva, E.I., Rosell, F.I., Mauk, A.G., Murphy, M.E.P., (2007) Biochemistry, 46, pp. 12366-12374
  • Tsuda, A., Ishikawa, R., Koteishi, H., Tange, K., Fukuda, Y., Kobayashi, K., Inoue, T., Nojiri, M., (2013) J. Biochem, (154), pp. 51-60
  • Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T., Bricogne, G., (2011) Acta Cryst D, 67, pp. 293-302
  • Whelan, S., Goldman, N., (2001) Mol. Biol. Evol, 18, pp. 691-699
  • Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Wilson, K.S., (2011) Acta Cryst D, 67, pp. 235-242
  • Yamaguchi, K., Kataoka, K., Kobayashi, M., Itoh, K., Fukui, A., Suzuki, S., (2004) Biochemistry, 43, pp. 14180-14188
  • Zumft, W.G., (1997) Microbiol. Mol. Biol. Rev, 61, pp. 533-616


---------- APA ----------
Opperman, D.J., Murgida, D.H., Dalosto, S.D., Brondino, C.D. & Ferroni, F.M. (2019) . A three-domain copper-nitrite reductase with a unique sensing loop. IUCrJ, 6, 248-258.
---------- CHICAGO ----------
Opperman, D.J., Murgida, D.H., Dalosto, S.D., Brondino, C.D., Ferroni, F.M. "A three-domain copper-nitrite reductase with a unique sensing loop" . IUCrJ 6 (2019) : 248-258.
---------- MLA ----------
Opperman, D.J., Murgida, D.H., Dalosto, S.D., Brondino, C.D., Ferroni, F.M. "A three-domain copper-nitrite reductase with a unique sensing loop" . IUCrJ, vol. 6, 2019, pp. 248-258.
---------- VANCOUVER ----------
Opperman, D.J., Murgida, D.H., Dalosto, S.D., Brondino, C.D., Ferroni, F.M. A three-domain copper-nitrite reductase with a unique sensing loop. IUCrJ. 2019;6:248-258.