Artículo

Gazoni, R.M.; Bellino, M.G.; Cecilia Fuertes, M.; Giménez, G.; Soler-Illia, G.J.A.A.; Ricci, M.L.M."Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement" (2017) Journal of Materials Chemistry C. 5(14):3445-3455
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work we present the designed production of a highly tunable nanocomposite able to confine and enhance the electromagnetic field through the combined effects of photonic and plasmonic responses. Silver nanoparticles (NPs) were embedded within a Mesoporous Photonic Crystal (MPC) composed of a mesoporous multilayer presenting a TiO2-SiO2 unit cell. This nanosystem was synthesized by a combination of reproducible sol-gel thin film techniques with the selective production of NPs within the titania layers. The design of the MPC architecture was tuned so that each photonic band gap edge would match the plasmonic absorption peak of the Ag NP, in order to combine their confined plasmonic enhancement with that of the band gap edges due to the multilayer structure. We find that the MPC contributes to enhancing the Surface Enhanced Raman Scattering (SERS) signal of probe molecules trapped in the mesopores. This effect indicates the relevance of the unit cell interfaces for the local electromagnetic field enhancements, and opens the gate to performing plasmon-assisted SERS sensing. The resulting material results in a promising platform to study the interplay between photonic and plasmonic systems. These tuneable nano-architectures are highly robust, reproducible, and can lead to applications in sensing platforms, as well as in optoelectronics, enhanced photocatalysis, or artificial photosynthesis. © The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement
Autor:Gazoni, R.M.; Bellino, M.G.; Cecilia Fuertes, M.; Giménez, G.; Soler-Illia, G.J.A.A.; Ricci, M.L.M.
Filiación:Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, San Martín, B1428KNA, Argentina
Departamento de Micro y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, San Martín, B1428KNA, Argentina
Instituto Sábato, UNSAM-CNEA, Avenida General Paz 1499, San Martín, B1428KNA, Argentina
CNMB, Instituto Nacional de Tecnología Industrial, Avenida General Paz 5445, San Martín, B1650WAB, Argentina
DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín, 1650, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:Electromagnetic field effects; Electromagnetic fields; Energy gap; Film preparation; Mesoporous materials; Multilayers; Nanocomposites; Nanoparticles; Nanosystems; Plasmons; Raman scattering; Silver; Sol-gels; Surface scattering; Titanium dioxide; Artificial photosynthesis; Electromagnetic field enhancement; Multilayer structures; Plasmonic response; Resulting materials; Selective production; Silver nanoparticle (NPs); Surface enhanced Raman Scattering (SERS); Photonic band gap
Año:2017
Volumen:5
Número:14
Página de inicio:3445
Página de fin:3455
DOI: http://dx.doi.org/10.1039/c6tc05195b
Handle:http://hdl.handle.net/20.500.12110/paper_20507534_v5_n14_p3445_Gazoni
Título revista:Journal of Materials Chemistry C
Título revista abreviado:J. Mater. Chem. C
ISSN:20507534
CODEN:JMCCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507534_v5_n14_p3445_Gazoni

Referencias:

  • Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D., (2011) Photonic crystals: molding the flow of light, , Princeton university press
  • Auguié, B., Fuertes, M.C., Angelomé, P.C., López Abdala, N., Soler-Illia, G.J.A.A., Fainstein, A., (2014) ACS Photonics, 1, pp. 775-780
  • Almeida, R.M., Rodrigues, A.S., (2003) J. Non-Cryst. Solids, 326-327, pp. 405-409
  • Sánchez-Sobrado, O., Calvo, M.E., Míguez, H., (2010) J. Mater. Chem., 20, pp. 8240-8246
  • Stefik, M., Guldin, S., Vignolini, S., Wiesner, U., Steiner, U., (2015) Chem. Soc. Rev., 44, pp. 5076-5091
  • Edrington, A.C., Urbas, A.M., DeRege, P., Chen, C.X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Thomas, E.L., (2001) Adv. Mater., 13, pp. 421-425
  • Choi, S.Y., Mamak, M., Von Freymann, G., Chopra, N., Ozin, G.A., (2006) Nano Lett., 6, pp. 2456-2461
  • Fuertes, M.C., López-Alcaraz, F.J., Marchi, M.C., Troiani, H.E., Luca, V., Míguez, H., Soler-Illia, G.D.A., (2007) Adv. Funct. Mater., 17, pp. 1247-1254
  • Floch, H., Priotton, J.-J., Thomas, I.M., (1989) Thin Solid Films, 175, pp. 173-178
  • Calvo, M.E., Sánchez-Sobrado, O., Colodrero, S., Míguez, H., (2009) Langmuir, 25, pp. 2443-2448
  • Guo, D.-L., Fan, L.-X., Wang, F.-H., Huang, S.-Y., Zou, X.-W., (2008) J. Phys. Chem. C, 112, pp. 17952-17956
  • Steele, J.J., Van Popta, A.C., Hawkeye, M.M., Sit, J.C., Brett, M.J., (2006) Sens. Actuators, B, 120, pp. 213-219
  • Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., Stucky, G.D., (1998) Nature, 396, pp. 152-155
  • Grosso, D., Cagnol, F., Soler-Illia, G.D.A., Crepaldi, E.L., Amenitsch, H., Brunet-Bruneau, A., Bourgeois, A., Sanchez, C., (2004) Adv. Funct. Mater., 14, pp. 309-322
  • Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C., Calvo, A., Wolosiuk, A., Zelcer, A., Bellino, M.G., Martínez, E.D., (2011) J. Sol-Gel Sci. Technol., 57, pp. 299-312
  • Guldin, S., Kolle, M., Stefik, M., Langford, R., Eder, D., Wiesner, U., Steiner, U., (2011) Adv. Mater., 23, pp. 3664-3668
  • Fuertes, M.C., Colodrero, S., Lozano, G., González-Elipe, A.R., Grosso, D., Boissiere, C., Sanchez, C., Míguez, H., (2008) J. Phys. Chem. C, 112, pp. 3157-3163
  • Dou, Y., Han, J., Wang, T., Wei, M., Evans, D.G., Duan, X., (2012) J. Mater. Chem., 22, pp. 14001-14007
  • Ghazzal, M., Deparis, O., Errachid, A., Kebaili, H., Simonis, P., Eloy, P., Vigneron, J.-P., Gaigneaux, E.M., (2012) J. Mater. Chem., 22, pp. 25302-25310
  • Ghazzal, M.N., Deparis, O., De Coninck, J., Gaigneaux, E.M., (2013) J. Mater. Chem. C, 1, pp. 6202-6209
  • Hidalgo, N., Calvo, M.E., Bellino, M.G., Soler-Illia, G.J.A.A., Míguez, H., (2011) Adv. Funct. Mater., 21, pp. 2534-2540
  • Calvo, M.E., Hidalgo, N., Schierholz, R., Kovacs, A., Fernandez, A., Bellino, M.G., Soler-Illia, G.J.A.A., Miguez, H., (2015) Nanoscale, 7, pp. 16583-16589
  • Li, R., Faustini, M., Boissière, C., Grosso, D., (2014) J. Phys. Chem. C, 118, p. 17710
  • Soler-Illia, G.J.A.A., Innocenzi, P., (2006) Chem.-Eur. J., 12, pp. 4478-4494
  • Besson, S., Gacoin, T., Ricolleau, C., Boilot, J.-P., (2003) Chem. Commun., pp. 360-361
  • Pérez, M.D., Otal, E., Bilmes, S.A., Soler-Illia, G.J., Crepaldi, E.L., Grosso, D., Sanchez, C., (2004) Langmuir, 20, pp. 6879-6886
  • Sánchez, V., Martínez, E., Martínez Ricci, M., Troiani, H., Soler-Illia, G., (2013) J. Phys. Chem. C, 117, pp. 7246-7259
  • Fischereder, A., Martinez-Ricci, M.L., Wolosiuk, A., Haas, W., Hofer, F., Trimmel, G., Soler-Illia, G.J., (2012) Chem. Mater., 24, pp. 1837-1845
  • Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C., Boilot, J.-P., (2002) Nano Lett., 2, pp. 409-414
  • Colodrero, S., Mihi, A., Häggman, L., Ocana, M., Boschloo, G., Hagfeldt, A., Miguez, H., (2009) Adv. Mater., 21, pp. 764-770
  • Puzzo, D.P., Scotognella, F., Zavelani-Rossi, M., Sebastian, M., Lough, A.J., Manners, I., Lanzani, G., Ozin, G.A., (2009) Nano Lett., 9, pp. 4273-4278
  • Bonifacio, L.D., Puzzo, D.P., Breslav, S., Willey, B.M., McGeer, A., Ozin, G.A., (2010) Adv. Mater., 22, pp. 1351-1354
  • Lee, K.S., El-Sayed, M.A., (2006) J. Phys. Chem. B, 110, pp. 19220-19225
  • Wolosiuk, A., Martínez, E.D., Tognalli, N.G., Granada, M., Fuertes, M.C., Troiani, H., Bilmes, S.A., Oler-Illia, G.J.A.A., (2014) ACS Appl. Mater. Interfaces, 6, pp. 5263-5272
  • Lopez-Puente, V., Abalde-Cela, S., Angelome, P.C., Alvarez-Puebla, R.A., Liz-Marzan, L.M., (2013) J. Phys. Chem. Lett., 4, pp. 2715-2720
  • López-Puente, V., Angelomé, P.C., Soler-Illia, G.J.A.A., Liz-Marzán, L.M., (2015) ACS Appl. Mater. Interfaces, 7, pp. 25633-25640
  • Xu, P., Kang, L., Mack, N.H., Schanze, K.S., Han, X., Wang, H.-L., (2013) Sci. Rep., 3, p. 2997
  • Zhang, Z., Zhang, L., Hedhili, M.N., Zhang, H., Wang, P., (2013) Nano Lett., 13, pp. 14-20
  • Jin, Z., Wang, Q., Zheng, W., Cui, X., (2016) ACS Appl. Mater. Interfaces, 8, pp. 5273-5279
  • Sánchez-Sobrado, O., Lozano, G., Calvo, M.E., Sánchez-Iglesias, A., Liz-Marzán, L.M., Míguez, H., (2011) Adv. Mater., 23, pp. 2108-2112
  • García-Santamaría, F., Salgueiriño-Maceira, V., López, C., Liz-Marzán, L.M., (2002) Langmuir, 18, pp. 4519-4522
  • Martínez, E.D., Bellino, M.G., Soler-Illia, G.J.A.A., (2009) ACS Appl. Mater. Interfaces, 1, pp. 746-749
  • Martínez, E.D., Granja, L., Bellino, M.G., Soler-Illia, G.J.A.A., (2010) Phys. Chem. Chem. Phys., 12, pp. 14445-14448
  • Fuertes, M.C., Marchena, M., Marchi, M.C., Wolosiuk, A., Soler-Illia, G.J.A.A., (2009) Small, 5, pp. 272-280
  • Brinker, C.J., Lu, Y., Sellinger, A., Fan, H., (1999) Adv. Mater., 11, pp. 579-585
  • Crepaldi, E.L., Soler-Illia, G.J.D.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., (2003) J. Am. Chem. Soc., 125, pp. 9770-9786
  • Grosso, D., Balkenende, A.R., Albouy, P.A., Ayral, A., Amenitsch, H., Babonneau, F., (2001) Chem. Mater., 13, pp. 1848-1856
  • Tompkins, H.G., McGahan, W.A., (1999) Spectroscopic ellipsometry and reflectometry: a user's guide, , Wiley, New York
  • Djurišic, A.B., Li, E.H., (1998) Appl. Opt., 37, pp. 5291-5297
  • Boissiere, C., Grosso, D., Lepoutre, S., Nicole, L., Bruneau, A.B., Sanchez, C., (2005) Langmuir, 21, pp. 12362-12371
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, , Springer, Berlin
  • Yeh, P., Yariv, A., Hong, C.-S., (1977) J. Opt. Soc. Am., 67, pp. 423-438
  • Yoshida, K.-I., Itoh, T., Biju, V., Ishikawa, M., Ozaki, Y., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 085419

Citas:

---------- APA ----------
Gazoni, R.M., Bellino, M.G., Cecilia Fuertes, M., Giménez, G., Soler-Illia, G.J.A.A. & Ricci, M.L.M. (2017) . Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement. Journal of Materials Chemistry C, 5(14), 3445-3455.
http://dx.doi.org/10.1039/c6tc05195b
---------- CHICAGO ----------
Gazoni, R.M., Bellino, M.G., Cecilia Fuertes, M., Giménez, G., Soler-Illia, G.J.A.A., Ricci, M.L.M. "Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement" . Journal of Materials Chemistry C 5, no. 14 (2017) : 3445-3455.
http://dx.doi.org/10.1039/c6tc05195b
---------- MLA ----------
Gazoni, R.M., Bellino, M.G., Cecilia Fuertes, M., Giménez, G., Soler-Illia, G.J.A.A., Ricci, M.L.M. "Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement" . Journal of Materials Chemistry C, vol. 5, no. 14, 2017, pp. 3445-3455.
http://dx.doi.org/10.1039/c6tc05195b
---------- VANCOUVER ----------
Gazoni, R.M., Bellino, M.G., Cecilia Fuertes, M., Giménez, G., Soler-Illia, G.J.A.A., Ricci, M.L.M. Designed nanoparticle-mesoporous multilayer nanocomposites as tunable plasmonic-photonic architectures for electromagnetic field enhancement. J. Mater. Chem. C. 2017;5(14):3445-3455.
http://dx.doi.org/10.1039/c6tc05195b