Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Directional freezing has been widely employed to prepare highly ordered three-dimensional (3D) porous assemblies. However, in this scenario, there is one concept that has not been extensively explored: by applying directional freezing to a nanoparticle (NP) dispersion supported on a substrate, two-dimensionally (2D) patterned films may be produced. In this study, tunable 2D-patterning of TiO2-NP dispersions on alumina substrates is demonstrated. By imposing different temperature gradients throughout the ceramic dispersion coatings, both homogeneous (non-patterned) and highly aligned patterned topologies (consisting of parallel grooves) were produced. In the case of patterned films, the orientation of the grooves was modulated from those oriented along the freezing direction to those perpendicularly oriented to the temperature gradient. Thermally induced reduction of the prepared films led to electrically conducting titanium oxide Magnéli phases. The measured resistances were strongly dependent on the orientation of the aligned patterns. To demonstrate the possibility of employing these structured films as platforms for electrical stimulation-related applications, a stimulating electronic circuit was developed and connected to the prepared films. Charge-balanced biphasic stimulus pulses with tunable current amplitudes and frequencies were successfully delivered through the conducting 2D-patterned assemblies. This journal is © the Partner Organisations 2014.

Registro:

Documento: Artículo
Título:2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation
Autor:Romeo, H.E.; Trabadelo, F.; Jobbágy, M.; Parra, R.
Filiación:Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar Del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B7608FDQ, Mar del Plata, Argentina
Instituto de Química Física de Los Materiales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428EHA Buenos Aires, Argentina
Palabras clave:Alumina substrates; Ceramic dispersion; Current amplitude; Directional freezing; Electrical stimulations; Patterned assembly; Structured films; Thermally induced; Alumina; Dispersions; Film preparation; Freezing; Oxide films; Substrates; Thermal gradients; Three dimensional; Titanium; Titanium oxides; Conductive films
Año:2014
Volumen:2
Número:15
Página de inicio:2806
Página de fin:2814
DOI: http://dx.doi.org/10.1039/c3tc32370f
Título revista:Journal of Materials Chemistry C
Título revista abreviado:J. Mater. Chem. C
ISSN:20507534
CODEN:JMCCC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507534_v2_n15_p2806_Romeo

Referencias:

  • Ozin, G.A., Arsenault, A.C., (2005) Nanochemistry: A Chemical Approach to Nanomaterials, , RSC Publishing, Cambridge, United Kingdom
  • Choi, M., Cho, H.S., Srivastava, R., Venkatesan, C., Choi, D.H., Ryoo, R., (2006) Nat. Mater., 5, p. 718
  • Nyholm, L., Nyström, G., Mihranyan, A., Stromme, M., (2011) Adv. Mater., 23, p. 3751
  • Vallet-Regí, M., (2009) J. Intern. Med., 267, p. 22
  • Su, B.L., Sanchez, C., Yang, X.Y., (2012) Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science, , Wiley-VCH, Weinheim, Germany
  • Quake, S.R., Scherer, A., (2000) Science, 290, p. 1536
  • Yamaguchi, A., Uejo, F., Yoda, T., Uchida, T., Tanamura, Y., Yamashita, T., Teramae, N., (2004) Nat. Mater., 3, p. 337
  • Gu, H., Zheng, R., Zhang, X., Xu, B., (2004) Adv. Mater., 16, p. 1356
  • Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S., (2004) Biomaterials, 25, p. 877
  • Deville, S., Saiz, E., Ravi, K., Nalla, R.V., Tomsia, A.P., (2006) Science, 311, p. 515
  • Romeo, H.E., Hoppe, C.E., López-Quintela, M.A., Williams, R.J.J., Minaberry, Y., Jobbágy, M., (2012) J. Mater. Chem., 22, p. 9195
  • Shlyakhtin, O.A., Oh, Y.J., Tretyakov, Y.D., (2000) J. Eur. Ceram. Soc., 20, p. 2047
  • Kuribayashi, K., Nicholson, P.S., (1980) Mater. Res. Bull., 15, p. 1595
  • Chen, C., Wang, W., (2007) Drying Technol., 25, p. 29
  • Gutiérrez, M.C., García-Carbajal, Z.Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., Ferrer, M.L., Del Monte, F., (2007) Adv. Funct. Mater., 17, p. 3505
  • Tang, X., Pikal, M.J., (2004) Pharm. Res., 21, p. 191
  • Li, W.L., Lu, K., Walz, J.Y., (2012) Int. Mater. Rev., 57, p. 37
  • Zhang, H., Cooper, A.L., (2007) Adv. Mater., 19, p. 1529
  • Deville, S., (2008) Adv. Eng. Mater., 10, p. 155
  • Gutiérrez, M.C., Ferrer, M.L., Del Monte, F., (2008) Chem. Mater., 20, p. 634
  • Qian, L., Zhang, H., (2011) J. Chem. Technol. Biotechnol., 86, p. 172
  • Han, J.C., Hu, L.Y., Zhang, Y.M., Zhou, Y.F., (2009) J. Am. Ceram. Soc., 92, p. 2165
  • Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., (2009) J. Am. Ceram. Soc., 92, p. 2489
  • Landi, E., Valentini, F., Tampieri, A., (2008) Acta Biomater., 4, p. 1620
  • Ren, L., Zeng, Y.-P., Jiang, D., (2007) J. Am. Ceram. Soc., 90, p. 3001
  • Lee, M.K., Chung, N.-O., Lee, J., (2010) Polymer, 51, p. 6258
  • Zhang, H., Hussain, I., Brust, M., Butler, M.F., Rannard, S.P., Cooper, A.I., (2005) Nat. Mater., 4, p. 787
  • Yao, C., Li, F., Li, X., Xia, D., (2012) J. Mater. Chem., 22, p. 16560
  • Contreras, R., Sahlin, H., Frangos, J.A., (2007) J. Biomed. Mater. Res., Part A, 80, p. 480
  • Canillas, M., Chinarro, E., Carballo-Vila, M., Jurado, J.R., Moreno, B., (2013) J. Mater. Chem. B, 1, p. 6459
  • Barbé, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M., (1997) J. Am. Ceram. Soc., 80, p. 3157
  • Smestad, G.P., Grätzel, M., (1998) J. Chem. Educ., 75, p. 752
  • Butler, M.F., (2002) Cryst. Growth Des., 2, p. 59
  • Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., Guizard, C., (2009) Nat. Mater., 8, p. 966
  • Korber, C., Rau, G., Cosman, M.D., Cravalho, E.G., (1985) J. Cryst. Growth, 72, p. 649
  • Gay, G., Azouni, M.A., (2002) Cryst. Growth Des., 2, p. 135
  • Shanti, N.O., Araki, K., Halloran, J.W., (2006) J. Am. Ceram. Soc., 89, p. 2444
  • Anderson, A.M., Worster, M.G., (2012) Langmuir, 28, p. 16512
  • Style, R.W., Peppin, S.S.L., Cocks, A.C.F., Wettlaufer, J.S., (2011) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 84, p. 1
  • Wang, X., Yu, J.C., Ho, C., Hou, Y., Fu, X., (2005) Langmuir, 21, p. 2552
  • Kitada, A., Hasegawa, G., Kobayashi, Y., Kanamori, K., Nakanishi, K., Kageyama, H., (2012) J. Am. Chem. Soc., 134, p. 10894
  • Liborio, L., Mallia, G., (2009) Phys. Rev. B: Condens. Matter Mater. Phys., 79, p. 245133
  • Eyert, V., Schwingenschlögl, U., Eckern, U., (2004) Chem. Phys. Lett., 390, p. 151
  • Siracusano, S., Baglio, V., D'Urso, C., Antonucci, V., Aricò, A.S., (2009) Electrochim. Acta, 54, p. 6292
  • Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53
  • Szot, K., Rogala, M., Speier, W., Klusek, Z., Besmehn, A., Waser, R., (2011) Nanotechnology, 22, p. 254001
  • Mycielska, M.E., Djamgoz, M.B., (2004) J. Cell Sci., 117, p. 1631
  • Markov, M.S., (2007) Electromagn. Biol. Med., 26, p. 257
  • Catterall, W.A., Perez-Reyes, E., Snutch, T.P., Striessnig, J., (2005) Pharmacol. Rev., 57, p. 411
  • Kim, I.S., Song, Y.M., Cho, T.H., Pan, H., Lee, T.H., Kim, S.J., Hwang, S.J., (2011) Tissue Eng., Part A, 17, p. 1327
  • McCaig, C.D., Rajnicek, A.M., Song, B., Zhao, M., (2005) Physiol. Rev., 85, p. 943
  • Li, L., El-Hayek, Y.H., Liu, B., Chen, Y., Gomez, E., Wu, X., Ning, K., Wan, Q., (2008) Stem Cells, 26, p. 2193
  • Rajnicek, A.M., Britland, S., McCaig, C.D., (1997) J. Cell Sci., 110, p. 2905
  • Rajnicek, A.M., McCaig, C.D., (1997) J. Cell Sci., 110, p. 2915
  • Huang, Z., Jiang, X., (2013) J. Mater. Chem. C, 1, p. 7652

Citas:

---------- APA ----------
Romeo, H.E., Trabadelo, F., Jobbágy, M. & Parra, R. (2014) . 2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation. Journal of Materials Chemistry C, 2(15), 2806-2814.
http://dx.doi.org/10.1039/c3tc32370f
---------- CHICAGO ----------
Romeo, H.E., Trabadelo, F., Jobbágy, M., Parra, R. "2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation" . Journal of Materials Chemistry C 2, no. 15 (2014) : 2806-2814.
http://dx.doi.org/10.1039/c3tc32370f
---------- MLA ----------
Romeo, H.E., Trabadelo, F., Jobbágy, M., Parra, R. "2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation" . Journal of Materials Chemistry C, vol. 2, no. 15, 2014, pp. 2806-2814.
http://dx.doi.org/10.1039/c3tc32370f
---------- VANCOUVER ----------
Romeo, H.E., Trabadelo, F., Jobbágy, M., Parra, R. 2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation. J. Mater. Chem. C. 2014;2(15):2806-2814.
http://dx.doi.org/10.1039/c3tc32370f