Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, nanostructured Ce0.9Gd0.1O2-δ (GDC) and Ce0.9Pr0.1O2-δ (PrDC) spheres previously obtained by microwave assisted hydrothermal homogeneous co-precipitation were impregnated with 1 wt% Pd by the incipient wetness impregnation by an aqueous Pd2+ solution. Their properties were characterized by synchrotron radiation X-ray diffraction (SR-XRD), X-ray absorption near-edge spectroscopy (XANES) and scanning and high resolution electron microscopy with X-ray spectroscopy. Spherical particles with average diameters around 200 nm were found to consist of crystallites of average size, 10 nm, with small particles of PdO finely dispersed over the sphere surface. In situ XRD and XANES experiments were carried out under reducing and oxidizing conditions in order to investigate the redox behaviour of these materials and to evaluate the effect of Pd loading on the oxidation state of Ce. All of the lanthanide-doped ceria (LnDC) supports were found to have a cubic crystal structure (Fm3m space group). An increase in lattice parameters was observed under reducing conditions which was attributed to the reduction of Ce4+ ions to the larger Ce3+ ions, and to the associated increase in oxygen vacancy (VO) concentration. Addition of Pd to the LnDC spheres increased their Ce3+ content. Finally, catalytic tests for CH4 combustion were performed on the LnDC and Pd/LnDC nanocatalysts. The best performance was observed in samples with 1 wt% Pd loading, which exhibited T50 values (temperature at which 50% of CH4 conversion was reached) close to 310 °C. These values are 220 °C and 260 °C lower than those obtained for nanostructured PrDC and GDC spheres alone, respectively. © 2018 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH4 combustion
Autor:Fuentes, R.O.; Acuña, L.M.; Leyva, A.G.; Baker, R.T.; Pan, H.; Chen, X.; Delgado-Jaén, J.J.
Filiación:Instituto de Nanociencia y Nanotecnología Departamento de Física, Centro Atómico Constituyentes, CNEA, Av. Gral. Paz 1499, San Martín Buenos Aires, 1650, Argentina
CONICET, Buenos Aires, Argentina
DEINSO (Departamento de Investigaciones en Sólidos), UNIDEF-CITEDEF, J.B. de la Salle 4397, Villa Martelli Buenos Aires, 1603, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de San, Martín M de Yrigoyen 3100, San Martín Buenos Aires, 1650, Argentina
EaStChem, School of Chemistry, University of St. Andrews North Haugh, St. Andrews, FifeKY16 9ST, United Kingdom
Departamento de Ciencia de Los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Universidad de Cádiz, Campus Río San Pedro, Puerto Real Cádiz, Spain
Palabras clave:Catalyst activity; Cerium oxide; Combustion; Crystal structure; Gadolinium compounds; High resolution electron microscopy; Nanocatalysts; Oxygen vacancies; Praseodymium compounds; Scanning electron microscopy; Spheres; Synchrotron radiation; X ray absorption; X ray diffraction; X ray spectroscopy; Cubic crystal structures; Homogeneous coprecipitation; Incipientwetness impregnation; Microwave-assisted hydrothermal; Oxidizing conditions; Physicochemical property; Synchrotron radiation x-ray diffractions; X-ray absorption near edge spectroscopy; Palladium
Año:2018
Volumen:6
Número:17
Página de inicio:7488
Página de fin:7499
DOI: http://dx.doi.org/10.1039/c8ta00203g
Título revista:Journal of Materials Chemistry A
Título revista abreviado:J. Mater. Chem. A
ISSN:20507488
CODEN:JMCAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507488_v6_n17_p7488_Fuentes

Referencias:

  • Di Monte, R., Kaspar, J., (2004) Top. Catal., 28, pp. 47-57
  • Park, S.D., Vohs, J.M., Gorte, R.J., (2000) Nature, 404, pp. 265-267
  • Haile, S.M., (2003) Mater. Today, 6, pp. 24-29
  • Steele, B.H.C., (1999) Nature, 400, pp. 619-621
  • Kaspar, J., Fornasiero, P., (2002) Catalysis by Ceria and Related Materials, pp. 217-236. , ed. A. Trovarelli, Imperial College Press, London
  • Kilner, J.A., (2000) Solid State Ionics, 123, pp. 13-23
  • Steele, B.C.H., (2000) Solid State Ionics, 129, pp. 95-110
  • Tuller, H.L., Bishop, S.R., Chen, D., Kuru, Y., Kim, J.-J., Stefanik, T.S., (2012) Solid State Ionics, 225, pp. 194-197
  • Yaremchenko, A.A., Valente, A.A., Kharton, V.V., Bashmakov, I.A., Rocha, J., Marques, F.M.B., (2003) Catal. Commun., 4, pp. 477-483
  • Jiang, S.P., Chen, X.J., Chan, S.H., Kwok, J.T., (2006) J. Electrochem. Soc., 153 (5), pp. A850-A856
  • Baker, R.T., Metcalfe, I.S., Middleton, P.H., Steele, B.C.H., (1994) Solid State Ionics, 72, pp. 328-333
  • Baker, R.T., Metcalfe, I.S., (1995) Appl. Catal., A, 126, pp. 297-317
  • Baker, R.T., Metcalfe, I.S., (1995) Appl. Catal., A, 126, pp. 319-332
  • Tao, S., Irvine, J.T.S., Plint, S.M., (2006) J. Phys. Chem. B, 110, pp. 21771-21776
  • Wu, K., Sun, L.-D., Yan, C.-H., (2016) Adv. Energy Mater., 6, pp. 1-7
  • Cargnello, M., Delgado Jaén, J.J., Hernández Garrido, J.C., Bakhmutsky, K., Montini, T., Calvino Gámez, J.J., Gorte, R.J., Fornasiero, P., (2012) Science, 337, pp. 713-717
  • Xie, S., Liu, Y., Deng, J., Zhao, X., Yang, J., Zhang, K., Han, Z., Dai, H., (2016) J. Catal., 342, pp. 17-26
  • Muñoz, F.F., Cabezas, M.D., Acuña, L.M., Leyva, A.G., Baker, R.T., Fuentes, R.O., (2011) J. Phys. Chem. C, 115, pp. 19687-19696
  • Muñoz, F.F., Baker, R.T., Leyva, A.G., Fuentes, R.O., (2013) Appl. Catal., B, 136-137, pp. 122-132
  • Muñoz, F.F., Acuña, L.M., Albornoz, C., Leyva, A.G., Baker, R.T., Fuentes, R.O., (2015) Nanoscale, 7, pp. 271-281
  • Klug, H., Alexander, L., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, p. 618. , John Wiley, New York
  • Rodríguez-Carvajal, J., (2011) FullProf Suite Program, Version 2.05. Laboratoire León Brillouin, , CEA-CNRS, Saclay, France
  • Young, R.A., (1993) The Rietveld Method, pp. 21-24. , ed. R. A. Young, Oxford University Press, Oxford, ch. 1
  • Zhang, F., Wang, P., Koberstein, J., Khalid, S., Chan, S.-W., (2004) Surf. Sci., 563, pp. 74-82
  • Gatica, J.M., Baker, R.T., Fornasiero, P., Bernal, S., Kašpar, J., (2001) J. Phys. Chem. B, 105, pp. 1191-1199
  • Norman, A., Perrichon, V., (2003) Phys. Chem. Chem. Phys., 5, pp. 3557-3564
  • Gennari, F.C., Carbajal Ramos, A., Condó, A., Montini, T., Bengió, S., Cortesi, A., Andrade Gamboa, J.J., Fornasiero, P., (2011) Appl. Catal., A, 398, pp. 123-133
  • Sluchinskaya, I.A., Lebedev, A.I., Erko, A., (2012) Phys. Solid State, 54 (5), pp. 975-979
  • Acuña, L.M., Muñoz, F.F., Albornoz, C., Leyva, A.G., Baker, R.T., Fuentes, R.O., (2015) J. Mater. Chem. A, 3, pp. 16120-16131
  • Kaspar, J., Fornasiero, P., Graziani, M., (1999) Catal. Today, 50, pp. 285-298
  • Zuo, Y., Huang, X., Li, L., Li, G., (2013) J. Mater. Chem. A, 1, pp. 374-380
  • Jiang, L., Fernández-García, S., Tinoco, M., Yan, Z., Xue, Q., Blanco, G., Calvino, J.J., Chen, X., (2017) ACS Appl. Mater. Interfaces, 9 (22), pp. 18595-18608
  • Green, I.X., Tang, W., Neurock, M., Yates, J.T., Jr., (2011) Science, 333, pp. 736-739
  • Fierro, J.L.G., (2006) Metal Oxides Chemistry, p. 217. , ch. 8
  • Hennings, U., Reimert, R., (2007) Appl. Catal., B, 70, pp. 498-508
  • Colussi, S., Trovarelli, A., Vesselli, E., Baraldic, A., Comelli, G., Groppi, G., Llorca, J., (2010) Appl. Catal., A, 390, pp. 1-10
  • Colussi, S., Trovarelli, A., Groppi, G., Llorca, J., (2007) Catal. Commun., 8, pp. 1263-1266
  • Hellman, A., Resta, A., Martin, N.M., Gustafson, J., Trin-Chero, A., Carlsson, P.A., Balmes, O., Grönbeck, H., (2012) J. Phys. Chem. Lett., 3, pp. 678-682
  • Simplício, L.M.T., Brandão, S.T., Domingos, D., Bozon-Verduraz, F., Sales, E.A., (2009) Appl. Catal., A, 360, pp. 2-7
  • Meng, L., Lin, J.-J., Pu, Z.-Y., Luo, L.-F., Jia, A.-P., Huang, W.-X., Luo, M.-F., Lu, J.-Q., (2012) Appl. Catal., B, 119-120, pp. 117-121
  • Hoflund, B.G., Hagelin, H.A.E., Weaver, J.F., Salaita, G.N., (2003) Appl. Surf. Sci., 205, pp. 102-112

Citas:

---------- APA ----------
Fuentes, R.O., Acuña, L.M., Leyva, A.G., Baker, R.T., Pan, H., Chen, X. & Delgado-Jaén, J.J. (2018) . Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH4 combustion. Journal of Materials Chemistry A, 6(17), 7488-7499.
http://dx.doi.org/10.1039/c8ta00203g
---------- CHICAGO ----------
Fuentes, R.O., Acuña, L.M., Leyva, A.G., Baker, R.T., Pan, H., Chen, X., et al. "Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH4 combustion" . Journal of Materials Chemistry A 6, no. 17 (2018) : 7488-7499.
http://dx.doi.org/10.1039/c8ta00203g
---------- MLA ----------
Fuentes, R.O., Acuña, L.M., Leyva, A.G., Baker, R.T., Pan, H., Chen, X., et al. "Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH4 combustion" . Journal of Materials Chemistry A, vol. 6, no. 17, 2018, pp. 7488-7499.
http://dx.doi.org/10.1039/c8ta00203g
---------- VANCOUVER ----------
Fuentes, R.O., Acuña, L.M., Leyva, A.G., Baker, R.T., Pan, H., Chen, X., et al. Physicochemical properties of nanostructured Pd/lanthanide-doped ceria spheres with high catalytic activity for CH4 combustion. J. Mater. Chem. A. 2018;6(17):7488-7499.
http://dx.doi.org/10.1039/c8ta00203g