Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Most accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.6% of the trajectories measured). We then studied the MNP-V speed at each point along the trajectory, and found that the application of a second depolarization stimulus during the tracking provokes an increase in the percentage of low-speed trajectory points in parallel with a decrease in the number of high-speed trajectory points. This result suggests that stimulation may facilitate the compartmentalization of internalized MNPs in a more restricted location such as was already demonstrated in neuronal and neuroendocrine cells (Bronfman et al 2003 J. Neurosci. 23 3209-20). Although further experiments will be required to address the mechanisms underlying this transport dynamics, our studies provide quantitative evidence of the heterogeneous behavior of vesicles mobility after endocytosis in chromaffin cells highlighting the potential of MNPs as alternative labels in optical microscopy to provide new insights into the vesicles dynamics in a wide variety of cellular environments. © 2017 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells
Autor:Gabriel, M.; Moya-Díaz, J.; Gallo, L.I.; Marengo, F.D.; Estrada, L.C.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA-CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Institute de Fisiologia, Biologia Molecular y Neurociencias, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires, Argentina
School of Life Sciences, University of Sussex, Brighton, BN 19QG, United Kingdom
Palabras clave:Fluorescence; Intracellular dynamics; Metallic nanoparticles; Microscopy; New labels for cell imaging; Single particle tracking; Two-photon; chlorpromazine; clathrin; gold; metal nanoparticle; potassium; animal; cell culture; chromaffin cell; drug effect; endocytosis; female; male; metabolism; mouse; single molecule imaging; Animals; Cells, Cultured; Chlorpromazine; Chromaffin Cells; Clathrin; Endocytosis; Female; Gold; Male; Metal Nanoparticles; Mice; Potassium; Single Molecule Imaging
Año:2018
Volumen:6
Número:1
DOI: http://dx.doi.org/10.1088/2050-6120/aa8c64
Título revista:Methods and Applications in Fluorescence
Título revista abreviado:Methods Appl. Fluoresc.
ISSN:20506120
CAS:chlorpromazine, 50-53-3, 69-09-0; gold, 7440-57-5; potassium, 7440-09-7; Chlorpromazine; Clathrin; Gold; Potassium
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20506120_v6_n1_p_Gabriel

Referencias:

  • Aaron, J., Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo (2007) J. Biomed. Opt., 12, p. 034007
  • Annibale, P., Dvornikov, A., Gratton, E., Optical measurement of focal offset in tunable lenses (2016) Opt. Express, 24, pp. 1031-1036
  • Anzalone, A., Gabriel, M., Estrada, L.C., Gratton, E., Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by two-photon excitation (2015) PLoS One, 10, p. e0124975
  • Arcizet, D., Meier, B., Sackmann, E., Radler, J.O., Heinrich, D., Analysis of active and passive transport in living cells (2008) Phys. Rev. Lett., 101, p. 248103
  • Asian, K., Lakowicz, J.R., Geddes, C.D., Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives (2005) Curr. Opin. Chem. Biol., 9, pp. 538-544
  • Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J. Physiol, 450, pp. 247-271
  • Bauer, A.R., Overlease, R.L., Lieber, J.L., Angleson, J.K., Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells (2004) J. Cell Sci., 117, pp. 2193-2202
  • Brangwynne, C.P., Koenderink, G.H., MacKintosh, F.C., Weitz, D.A., Intracellular transport by active diffusion (2009) Trends Cell Biol, 19, p. 423
  • Bronfman, F.C., Tcherpakov, M., Jovin, T.M., Fainzilber, M., Ligand-induced internalization of the p75 neurotrophin receptor: A slow route to the signaling endosome (2003) J. Neurosci., 23, pp. 3209-3220
  • Ceridono, M., Selective recapture of secretory granule components after full collapse exocytosis in neuroendocrine chromaffin cells (2011) Traffic, 12, pp. 72-88
  • Chan, S.A., Smith, C., Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells (2001) J. Physiol., 537, pp. 871-885
  • Chen, F., Rowen, L., Hood, L., Rothenberg, E.V., Differential transcriptional regulation of individual TCR vbeta segments before gene rearrangement (2001) J. Immunol, 166, pp. 1771-1780
  • Colombo, M.I., Beron, W., Stahl, P.D., Calmodulin regulates endosome fusion (1997) J. Biol Chem., 272, pp. 7707-7712
  • De Diego, A.M.G., Gandia, L., Garcia, A.G., A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal (2007) Medulla Acta Physiol, 192, pp. 287-301
  • Doreian, B.W., Fulop, T.G., Smith, C.B., Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells (2008) J. Neurosci., 28, pp. 4470-4478
  • Durr, N.J., Larson, T., Smith, D.K., Korgel, B.A., Sokolov, K., Ben-Yakar, A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods (2007) Nano Lett., 7, pp. 941-945
  • Estrada, L.C., Gratton, E., Spectroscopic properties of gold nanoparticles at the single-particle level in biological environments (2012) Chem. Phys. Chem., 13, pp. 1087-1092
  • Giner, D., Ñeco, P., Del Mar Francés, M., López, I., Viniegra, S., Gutiérrez, L.M., Real-time dynamics of the F-Actin cytoskeleton during secretion from chromaffin cells (2005) J Cell Sci., 118, pp. 2871-2880
  • Giner, D., López, I., Villanueva, J., Torres, V., Viniegra, S., Gutiérrez, L.M., Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells (2007) Neuroscience, 146, pp. 659-669
  • Hart, A., Mann-whitney test is not just a test of medians: Differences in spread can be important (2001) Br. Med. J., 323, pp. 391-393
  • Hellriegel, C., Gratton, E., Real-time multi-parameter spectroscopy and localization in three-dimensional single-particle tracking (2009) J. R. Soc. Interface, 6, pp. S3-S14
  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine (2008) Acc. Chem. Res., 41, pp. 1578-1586
  • Joensuu, M., Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles (2016) J. Cell Biol, 215, pp. 277-292
  • Kis-Petikova, K., Gratton, E., Distance measurement by circular scanning of the excitation beam in the two-photon microscope (2004) Microsc. Res. Tech., 63, pp. 34-49
  • Knight, D.E., Calcium-dependent transferrin receptor recycling in bovine chromaffin cells (2002) Traffic, 3, pp. 298-307
  • Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R.S., Fujiwara, T., Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: High-speed single-molecule tracking of membrane molecules (2005) Annu. Rev. Biophys. Biomol Struct., 34, pp. 351-378
  • Levi, V., Ruan, Q., Plutz, M., Belmont, A.S., Gratton, E., Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope (2005) Biophys. J., 89, pp. 4275-4285
  • Loverdo, C., Benichou, O., Moreau, M., Voituriez, R., Enhanced reaction kinetics in biological cells (2008) Nat. Phys., 4, p. 134
  • Mahowald, J., Arcizet, D., Heinrich, D., Impact of external stimuli and cell micro-architecture on intracellular transport states (2009) Chem. Phys. Chem., 10, pp. 1559-1566
  • Manzo, C., Garcia-Parajo, M.F., A review of progress in single particle tracking: From methods to biophysical insights (2015) Rep. Prog. Phys., 8, p. 124601
  • Maucort, G., Kasula, R., Papadopulos, A., Nieminen, T., Rubinsztein-Dunlop, H., Meunier, F., Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells (2014) PLoS One, 9, p. e87242
  • Maxfield, F.R., McGraw, T.E., Endocytic recycling (2004) Nat. Rev. Mol Cell Biol., 5, pp. 121-132
  • Merrifield, C.J., Moss, S.E., Ballestrem, C., Imhof, B.A., Giese, G., Wunderlich, I., Almers, W., Endocytic vesicles move at the tips ofactin tails in cultured mast cells (1999) Nat. Cell Biol., 1, pp. 72-74
  • Monnier, N., Guo, S., Mori, M., He, J., Lénárt, P., Bathe, M., Bayesian approach to MSD-based analysis of particle motion in live cells (2012) Biophys. J., 103, pp. 616-626
  • Moya-Diaz, J., Alvarez, Y.D., Montenegro, M., Bayonés, L., Belingheri, A.V., Gonzalez-Jamett, A.M., Cárdenas, A.M., Marengo, F.D., Sustained exocytosis after action potential-like stimulation at low frequencies in mouse chromaffin cells depends on a dynamin-dependent fast endocytotic process (2016) Front. Cell Neurosci., 10, p. 184
  • Nachar, N., The mann-whitney U: A test for assessing whether two independent samples come from the same distribution (2008) Tutorials Quant. Methods Psychol., 4, pp. 13-20
  • Neco, P., Giner, D., Del Mar Francés, M., Viniegra, S., Gutiérrez, L.M., Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells (2003) Eur. J. Neurosci., 18, pp. 733-742
  • Ñeco, P., Giner, D., Viniegra, S., Borges, R., Villarroel, A., Gutierrez, L.M., Newroles of myosin II during vesicle transport and fusion in chromaffin cells (2004) J. Cell Biol., 279, pp. 27450-27457
  • Patzak, A., Winkler, H., Exocytotic exposure and recycling of membrane antigens of chromaffin granules: Ultrastructural evaluation after immunolabeling (1986) J. Cell Biol., 102, pp. 510-515
  • Perez Bay, A.E., Belingheri, A.V., Álvarez, Y.D., Marengo, F.D., Membrane cycling after the excess retrieval mode of rapid endocytosis in mouse chromaffin cells (2012) Acta Physiol., 204, pp. 403-418
  • Perez Bay, A.E., Ibanez, L.I., Marengo, F.D., Rapid recovery of releasable vesicles and formation of nonreleasable endosomes follow intense exocytosis in chromaffin cells (2007) Am. J. Physiol Cell Physiol., 293, pp. C1509-C1522
  • Phillips, J.H., Burridge, K., Wilson, S.P., Kirshner, N., Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells (1983) J. Cell Biol., 97, pp. 1906-1917
  • Pinaud, F., Clarke, S., Sittner, A., Dahan, M., Probing cellular events, one quantum dot at a time (2010) Nat. Methods, 7, pp. 275-285
  • Qualmann, B., Kelly, R.B., Syndapin isoforms participate in receptor-mediated endocytosis and actin organization (2000) J. Cell Biol., 148, pp. 1047-1061
  • Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., Quantum dots versus organic dyes as fluorescent labels (2008) Nat. Methods, 5, pp. 763-775
  • Ruthardt, N., Lamb, D.C., Brauchle, C., Single particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles (2011) Mol. Ther., 19, pp. 1199-1211
  • Saxton, M.J., Lateral diffusion in an archipelago: Single-particle diffusion (1993) Biophys. J., 64, pp. 1766-1780
  • Saxton, M.J., Single-particle tracking: The distribution of diffusion coefficients (1997) Biophys. J., 72, pp. 1744-1753
  • Smith, C., Moser, T., Xu, T., Neher, E., Cytosolic Ca 2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells (1998) Neuron, 20, pp. 1243-1253
  • Sorensen, J.B., Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles (2004) Pflugers Archiv: Eur. J. Physiol., 448, pp. 347-362
  • Steyer, J.A., Almers, W., Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy (1999) Biophys. J., 76, pp. 2262-2271
  • Trifaró, J.M., Gasman, S., Gutiérrez, L.M., Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells (2008) Acta Physiol., 192, pp. 165-172
  • Tucker-Schwartz, J.M., Beavers, K.R., Sit, W.W., Shah, A.T., Duvall, C.L., Skala, M.C., In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography (2014) Biomed. Opt. Express, 5, pp. 1731-1743
  • Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615
  • Wang, H.F., Huff, T.B., Zweifel, D.A., He, W., Low, P.S., Wei, A., Cheng, J.X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods (2005) Proc. Natl Acad., 44, pp. 15752-15756
  • Wang, L.H., Rothberg, K.G., Anderson, R.G., Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation (1993) J. Cell Biol., 123, pp. 1107-1117
  • Wen, P.J., Phosphatidylinositol (4,5) bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells (2011) Nat. Commun., 2, p. 491
  • Wu, L.G., Hamid, E., Shin, W., Chiang, H.C., Exocytosis and endocytosis: Modes, functions, and coupling mechanisms (2014) Annu. Rev. Physiol., 76, pp. 301-331
  • Zhou, X., Wang, L., Uses of single-particle tracking in living cells (2010) Drug Discov. Ther., 4, pp. 62-69

Citas:

---------- APA ----------
Gabriel, M., Moya-Díaz, J., Gallo, L.I., Marengo, F.D. & Estrada, L.C. (2018) . Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells. Methods and Applications in Fluorescence, 6(1).
http://dx.doi.org/10.1088/2050-6120/aa8c64
---------- CHICAGO ----------
Gabriel, M., Moya-Díaz, J., Gallo, L.I., Marengo, F.D., Estrada, L.C. "Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells" . Methods and Applications in Fluorescence 6, no. 1 (2018).
http://dx.doi.org/10.1088/2050-6120/aa8c64
---------- MLA ----------
Gabriel, M., Moya-Díaz, J., Gallo, L.I., Marengo, F.D., Estrada, L.C. "Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells" . Methods and Applications in Fluorescence, vol. 6, no. 1, 2018.
http://dx.doi.org/10.1088/2050-6120/aa8c64
---------- VANCOUVER ----------
Gabriel, M., Moya-Díaz, J., Gallo, L.I., Marengo, F.D., Estrada, L.C. Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells. Methods Appl. Fluoresc. 2018;6(1).
http://dx.doi.org/10.1088/2050-6120/aa8c64