Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The stochastic dynamics of individual co-doped Er:Yb upconversion nanoparticles (UCNP) were investigated from experiments and simulations. TheUCNPwere characterized by high-resolution scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Single UCNPmeasurements were performed by fluorescence upconversion micro-spectroscopy and optical trapping. The mean-square displacement (MSD) from singleUCNPexhibited a time-dependent diffusion coefficient which was compared with Brownian dynamics simulations of a viscoelastic model of harmonically bound spheres. Experimental time-dependent two-dimensional trajectories of individualUCNPrevealed correlated two-dimensional nanoparticle motion. The measurements were compared with stochastic trajectories calculated in the presence of a non-conservative rotational force field. Overall, the complex interplay ofUCNPadhesion, thermal fluctuations and optical forces led to a rich stochastic behavior of these nanoparticles. ©2017 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, nonconservative, harmonic and optical forces
Autor:Nome, R.A.; Sorbello, C.; Jobbágy, M.; Barja, B.C.; Sanches, V.; Cruz, J.S.; Aguiar, V.F.
Filiación:Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
INQUIMAE, CONICET, Argentina
Palabras clave:Microscopy; Stochastic dynamics; Upconversion nanoparticles
Año:2017
Volumen:5
Número:1
DOI: http://dx.doi.org/10.1088/2050-6120/aa5a81
Título revista:Methods and Applications in Fluorescence
Título revista abreviado:Methods Appl. Fluoresc.
ISSN:20506120
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20506120_v5_n1_p_Nome

Referencias:

  • Bialek, W., (2012) Biophysics: Searching for Principles, , (Princeton: Princeton University Press
  • Nitzan, A., (2006) Chemical Dynamics in Condensed Phases, , (New York: Oxford University Press
  • Zwanzig, R.W., (2001) Nonequilibrium Statistical Mechanics, , (New York: Oxford University Press
  • Anna, J.M., Kubarych, K.J., Watching solvent friction impede ultrafast barrier crossing: A direct test of Kramers (2010) Theory J. Chem. Phys, 133, p. 174506
  • Fleming, G.R., Courtney, S.H., Balk, M.W., Activated barrier crossing: Comparison between experiment and theory (1986) J. Stat. Phys, 42, pp. 83-104
  • Rothenberger, G., Negus, D.K., Hochstrasser, R.M., (1983) J. Chem. Phys, 79, pp. 53-60
  • Grote, R.F., Hynes, J.T., (1980) J. Chem. Phys, 73, pp. 215-220
  • Silva, R.G., Murkin, A.S., Schramm, V.L., Femtosecond dynamics coupled to barrier crossing in a Born-Oppenheimer enzyme (2011) PNAS, 108, pp. 18661-18665
  • Mason, T.G., Weitz, D.A., Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids (1995) Phys. Rev. Lett, 74, pp. 1250-1253
  • Ashkin, A., Acceleration and trapping of particles by radiation pressure (1970) Phys. Rev. Lett, 24, pp. 156-159
  • Crocker, J.C., Matteo, J.A., Dinsmore, A.D., Yodh, A.G., Entropic attraction and repulsion in binary colloids probed with a line optical tweezer (1999) Phys. Rev. Lett, 82, pp. 4352-4355
  • Chen, F.-J., Thermally activated state transition technique for femto-Newton-level force measurement (2012) Opt. Lett, 37, pp. 1469-1471
  • Phillips, D.B., Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking (2011) J. Opt, 13, p. 044023
  • Sorbello, C., Barja, B.C., Jobbagy, M., Monodispersed Ce(IV)-Gd(III)-Eu(III) oxide phosphors for enhanced red emission under visible excitation (2014) J. Mater. Chem.C, 2, pp. 1010-1017
  • Di Leonardo, R., Cammarota, E., Bolognesi, G., Schafer, H., Steinhart, M., Three-dimensional to two-dimensional crossover in the hydrodynamic interactions between micronscale rods (2011) Phys. Rev. Lett, 107, p. 044501
  • Vestergaard, C.L., Blainey, P.C., Flyvbjerg, H., Optimal estimation of diffusion coefficients from single-particle trajectories (2014) Phys. Rev. e, 89, p. 022726
  • Langevin, P., Sur la théorie du mouvement brownien (1908) CR Acad. Sci. (Paris), 146, pp. 530-533
  • Auzel, F., Upconversion and Anti-Stokes processes with f and d ions in solids (2004) Chem. Rev, 104, pp. 139-173
  • Liu, X., Yan, C.-H., John, A.C., (2015) Chem. Soc. Rev, 44, pp. 1299-12991
  • Rodrigues, E.M., Mazali, I.O., Sigoli, F.A., Luminescent properties of passivated europium(III)-doped rare earth oxide sub-10 nmnanoparticles (2013) RSC Adv, 3, pp. 2794-2801
  • Schafer, H., Haase, M., Upconverting nanoparticles (2011) Angew. Chem. Int. Ed. Engl, 50, pp. 5808-5829
  • Singer, W., Three-dimensional force calibration of optical tweezers (2000) J. Mod. Opt, 47, pp. 2921-2931
  • Li, T., Measurement of the instantaneous velocity of a Brownian particle (2010) Science, 328, pp. 1673-1675
  • Huang, R., Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid (2011) Nat. Phys, 7, pp. 576-580
  • Qian, H., Sheetz, M.P., Elson, E.L., Single particle tracking. Analysis of diffusion and flow in two-dimensional systems (1991) Biophys. J, 60, pp. 910-921
  • Saxton, M.J., Single-particle tracking: The distribution of diffusion coefficients (1997) Biophys. J, 72, pp. 1744-1753
  • Volpe, G., Volpe, G., Simulation of a Brownian particle in an optical trap (2013) Am. J. Phys, 81, p. 224

Citas:

---------- APA ----------
Nome, R.A., Sorbello, C., Jobbágy, M., Barja, B.C., Sanches, V., Cruz, J.S. & Aguiar, V.F. (2017) . Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, nonconservative, harmonic and optical forces. Methods and Applications in Fluorescence, 5(1).
http://dx.doi.org/10.1088/2050-6120/aa5a81
---------- CHICAGO ----------
Nome, R.A., Sorbello, C., Jobbágy, M., Barja, B.C., Sanches, V., Cruz, J.S., et al. "Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, nonconservative, harmonic and optical forces" . Methods and Applications in Fluorescence 5, no. 1 (2017).
http://dx.doi.org/10.1088/2050-6120/aa5a81
---------- MLA ----------
Nome, R.A., Sorbello, C., Jobbágy, M., Barja, B.C., Sanches, V., Cruz, J.S., et al. "Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, nonconservative, harmonic and optical forces" . Methods and Applications in Fluorescence, vol. 5, no. 1, 2017.
http://dx.doi.org/10.1088/2050-6120/aa5a81
---------- VANCOUVER ----------
Nome, R.A., Sorbello, C., Jobbágy, M., Barja, B.C., Sanches, V., Cruz, J.S., et al. Rich stochastic dynamics of co-doped Er:Yb fluorescence upconversion nanoparticles in the presence of thermal, nonconservative, harmonic and optical forces. Methods Appl. Fluoresc. 2017;5(1).
http://dx.doi.org/10.1088/2050-6120/aa5a81