Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of dye concentration on the fluorescence, ΦF, and singlet molecular oxygen, ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nmthick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF=0.05±0.01 andΦΔ=0.76±0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05Mand concentration self-quenching after 0.01Mare interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius rQ=1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF, trap/ΦF, monomer≈0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided. ©2017 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps
Autor:Ezquerra Riega, S.D.; Rodríguez, H.B.; Román, E.S.
Filiación:CONICET-Universidad de Buenos Aires, Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pab. II, Buenos Aires, Argentina
INIFTA (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Diag. 113 y Calle 64, La Plata, Argentina
Palabras clave:Energy trapping; Fluorescence; PHEMA; Polymer films; Rose bengal; Singlet molecular oxygen
Año:2017
Volumen:5
Número:1
DOI: http://dx.doi.org/10.1088/2050-6120/aa61ae
Título revista:Methods and Applications in Fluorescence
Título revista abreviado:Methods Appl. Fluoresc.
ISSN:20506120
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20506120_v5_n1_p_EzquerraRiega

Referencias:

  • Kochevar, I.E., Redmond, R.W., Photosensitized production of singlet oxygen (2000) Methods Enzimol, 319, pp. 20-28
  • Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond fluorescence studies of xanthene dyes (1977) J. Am. Chem. Soc, 99, pp. 4306-4311
  • Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci, 11, pp. 1010-1017
  • Neckers, D.C., Heterogeneous sensitizers based on merrifield copolymer beads (1985) Reactive Polym, 3, pp. 277-298
  • Lopez, S.G., Crovetto, L., Alvarez-Pez, J.M., Talavera, E.M., San Román, E., Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose (2014) Photochem. Photobiol. Sci, 13, pp. 1311-1320
  • Reisch, A., Klymchenko, A.S., Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging (2016) Small, 12, pp. 1968-1992
  • Rodríguez, H.B., Lagorio, M.G., San Roman, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimmers (2004) Photochem. Photobiol. Sci, 3, pp. 674-680
  • Litman, Y., Rodríguez, H.B., San Román, E., Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2- hydroxyethyl methacrylate) (2016) Photochem. Photobiol. Sci, 15, pp. 80-85
  • Seybold, P.G., Gouterman, M., Callis, J., Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes (1969) Photochem. Photobiol, 9, pp. 229-242
  • Figueiredo, T.L.C., Johnstone, R.A.W., Ana Sørensen Amp, S., Burget, D., Jacques, P., Determination of fluorescence yields, singlet lifetimes and singlet oxygen yields of waterinsoluble porphyrins and metalloporphyrins in organic solvents and in aqueous media (1999) Photochem. Photobiol, 69, pp. 517-528
  • Mirenda, M., Strassert, C.A., Dicelio, L.E., San Roman, E., Dye-polyelectrolyte layer-by-layer self-assembled materials: Molecular aggregation, structural stability, and singlet oxygen photogeneration (2010) ACS Appl. Mater. Interfaces, 2, pp. 1556-1560
  • Nowakowska, M., Solvent effect on the quantum yield of the self-sensitized photoperoxidation of 1, 3- diphenilisobenzofuran (1984) J. Chem. Soc. Faraday Trans, 1, pp. 2119-2126
  • Usui, Y., Determination of quantum yield of singlet oxygen formation by photosensitization (1973) Chem. Lett, 2, pp. 743-744
  • Usui, Y., Tsukada, M., Nakamura, H., Kinetic studies of photosensitized oxygenation by singlet oxygen in aqueous micellar solutions (1978) Bull. Chem. Soc. Japan, 51, pp. 379-384
  • Parker, J.W., Cox, M.E., Mass transfer of oxygen in poly (2-hydroxyethyl methacrylate) (1988) J. Polym. Sci. A, 26, pp. 1179-1188
  • Loring, R.F., Andersen, H.C., Fayer, M.D., Electronic excited state transport and trapping in solution (1982) J. Chem. Phys, 76, pp. 2015-2027
  • Kulak, L., Bojarski, C., Forward and reverse electronic energy transport and trapping in solution: II. Numerical results and Monte Carlo simulations (1995) Chem. Phys, 191, pp. 67-86
  • Lopez, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys, 12, pp. 2246-2253
  • De Girolamo Del Mauro, A., Grimaldi, A.I., La Ferrara, V., Massera, E., Miglietta, M.L., Polichetti, T., Di Francia, G., A simple optical model for the swelling evaluation in polymer nanocomposites (2009) J. Sens, 2009, p. 703206
  • Krimer, N.I., Rodrigues, D., Rodríguez, H.B., Mirenda, M., Steady-state fluorescence of highly absorbing samples in transmission geometry: A simplified quantitative approach considering reabsorption events (2017) Anal. Chem, 89, pp. 640-647
  • Kramer, L.E., Spears, K.G., Hydrogen bond strengths from solvent-dependent lifetimes of rose bengal dye (1978) J. Am. Chem. Soc, 100, pp. 221-227
  • Litman, Y., Voss, M.G., Rodríguez, H.B., San Roman, E., Effect of concentration on the formation of rose bengal triplet state on microcrystalline cellulose: A combined laser-induced optoacoustic spectroscopy, diffuse reflectance flash photolysis, and luminescence study (2014) J. Phys. Chem.A, 118, pp. 10531-10537
  • Rabek, J.F., (1996) Photodegradation of Polymers: Physical Characteristics and Applications, p. 87. , Berlin: Springer
  • Gottschalk, P., Paczkowski, J., Neckers, D.C., Factors influencing the quantum yields for rose bengal formation of singlet oxygen (1986) J. Photochem, 35, pp. 277-281
  • Wilkinson, F., Helman, W.P., Ross, A.B., Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution (1993) J. Phys. Chem. Ref. Data, 22, pp. 113-262
  • Talhavini, M., Atvars, T.D.Z., Photostability of xanthene molecules trapped in poly(vinyl alcohol) (PVA) matrices (1999) J. Photochem. Photobiol. A, 120, pp. 141-149
  • Kasche, V., Liindqvist, L., Reactions between the triplet state of fluorescein and oxygen (1964) J. Phys. Chem, 68, pp. 817-823
  • Song, L., Varma, C.A.G., Verhoeven, A.J.W., Tanke, H.J., Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy (1996) Biophys. Chem, 70, pp. 2959-2968
  • Roncel, M., Navarro, J.A., De La Rosa, M.A., Hydrogen peroxide photoproduction sensitized with rose bengal with semicarbazide as the electron source (1996) J. Photochem. Photobiol. A, 45, pp. 341-353
  • Kamat, P.V., Fox, M.A., Photophysics and photochemistry of xanthene dyes in polymer solutions and films (1984) J. Phys. Chem, 88, pp. 2297-2302
  • Lee, P.C.C., Rodgers, M.A.J., Laser flash photokinetic studies of rose bengal sensitized photodynamic interactions of nucleotides and DNA (1987) Photochem. Photobiol, 45, pp. 79-86

Citas:

---------- APA ----------
Ezquerra Riega, S.D., Rodríguez, H.B. & Román, E.S. (2017) . Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps. Methods and Applications in Fluorescence, 5(1).
http://dx.doi.org/10.1088/2050-6120/aa61ae
---------- CHICAGO ----------
Ezquerra Riega, S.D., Rodríguez, H.B., Román, E.S. "Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps" . Methods and Applications in Fluorescence 5, no. 1 (2017).
http://dx.doi.org/10.1088/2050-6120/aa61ae
---------- MLA ----------
Ezquerra Riega, S.D., Rodríguez, H.B., Román, E.S. "Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps" . Methods and Applications in Fluorescence, vol. 5, no. 1, 2017.
http://dx.doi.org/10.1088/2050-6120/aa61ae
---------- VANCOUVER ----------
Ezquerra Riega, S.D., Rodríguez, H.B., Román, E.S. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Selfquenching by photoactive energy traps. Methods Appl. Fluoresc. 2017;5(1).
http://dx.doi.org/10.1088/2050-6120/aa61ae