Artículo

Lleras Forero, L.; Narayanan, R.; Huitema, L.F.A.; Vanbergen, M.; Apschner, A.; Peterson-Maduro, J.; Logister, I.; Valentin, G.; Morelli, L.G.; Oates, A.C.; Schulte-Merker, S. "Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock" (2018) eLife. 7
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. © Lleras Forero et al.

Registro:

Documento: Artículo
Título:Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock
Autor:Lleras Forero, L.; Narayanan, R.; Huitema, L.F.A.; Vanbergen, M.; Apschner, A.; Peterson-Maduro, J.; Logister, I.; Valentin, G.; Morelli, L.G.; Oates, A.C.; Schulte-Merker, S.
Filiación:Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany
Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
The Francis Crick Institute, London, United Kingdom
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina
Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
Department of Cell and Developmental Biology, University College London, London, United Kingdom
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Sidney Kimmel Medical College at Thomas Jefferson University, Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Center for Fibrotic Diseases, Philadelphia, United States
Department of Laboratory Medicine, Laboratory of Hematology, Radboud University medical center, Nijmegen, Netherlands
Palabras clave:amniote; Article; axial patterning; coccygeal vertebra; controlled study; DNA binding; embryo; embryo segmentation; gene expression; in situ hybridization; mesoderm; muscle cell; myotome; nonhuman; notochord; ossification; osteoblast; promoter region; sclerotome; stop codon; teleost; vertebra body; zebra fish
Año:2018
Volumen:7
DOI: http://dx.doi.org/10.7554/eLife.33843
Título revista:eLife
Título revista abreviado:eLife
ISSN:2050084X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2050084X_v7_n_p_LlerasForero

Referencias:

  • Aoyama, H., Asamoto, K., Determination of somite cells: Independence of cell differentiation and morphogenesis (1988) Development, 104, pp. 15-28. , 3253056
  • Apschner, A., (2014) Putting Crystals in Place, the Regulation of Biomineralization in Zebrafish, , Netherlands: Utrecht University
  • Arratia, G., Schultze, H.P., Casciotta, J., Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology (2001) Journal of Morphology, 250, pp. 101-172. , https://doi.org/10.1002/jmor.1062, 11746457
  • Aulehla, A., Wiegraebe, W., Baubet, V., Wahl, M.B., Deng, C., Taketo, M., Lewandoski, M., Pourquié, O., A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation (2008) Nature Cell Biology, 10, pp. 186-193. , https://doi.org/10.1038/ncb1679, 18157121
  • Bessho, Y., Sakata, R., Komatsu, S., Shiota, K., Yamada, S., Kageyama, R., Dynamic expression and essential functions of Hes7 in somite segmentation (2001) Genes & Development, 15, pp. 2642-2647. , 11641270
  • Busch-Nentwich, E., Dooley, C., Kettleborough, R., Stemple, D.L., Sanger Institute Zebrafish Mutation Project mutant data submission (2013) The Zebrafish Information Network, , Identifier: ZDB-PUB-130425-4
  • Choorapoikayil, S., Willems, B., Ströhle, P., Gajewski, M., Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module (2012) Plos ONE, 7. , 22723933
  • Cote, S., Carroll, R., Cloutier, R., Bar-Sagi, L., Vertebral development in the Devonian Sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non-amniote tetrapods (2002) Journal of Vertebrate Paleontology, 22, pp. 487-502. , https://doi.org/10.1671/0272-4634(2002)022[0487:VDITDS]2.0.CO;2
  • Crampin, E.J., Gaffney, E.A., Maini, P.K., Reaction and diffusion on growing domains: Scenarios for robust pattern formation (1999) Bulletin of Mathematical Biology, 61, pp. 1093-1120. , 17879872
  • Dahlem, T.J., Hoshijima, K., Jurynec, M.J., Gunther, D., Starker, C.G., Locke, A.S., Weis, A.M., Grunwald, D.J., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome (2012) Plos Genetics, 8. , 22 916025
  • Deniziak, M., Thisse, C., Rederstorff, M., Hindelang, C., Thisse, B., Lescure, A., Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo (2007) Experimental Cell Research, 313, pp. 156-167. , https://doi.org/10.1016/j.yexcr.2006.10.005, 17123513
  • Durbin, L., Sordino, P., Barrios, A., Gering, M., Thisse, C., Thisse, B., Brennan, C., Holder, N., Anteroposterior patterning is required within segments for somite boundary formation in developing zebrafish (2000) Development, 127, pp. 1703-1713. , 10725246
  • Erickson, T., Scholpp, S., Brand, M., Moens, C.B., Jan Waskiewicz, A., Pbx proteins cooperate with Engrailed to pattern the midbrain–hindbrain and diencephalic–mesencephalic boundaries (2007) Developmental Biology, 301, pp. 504-517. , https://doi.org/10.1016/j.ydbio.2006.08.022
  • Fleming, A., Keynes, R., Tannahill, D., A central role for the notochord in vertebral patterning (2004) Development, 131, pp. 873-880. , 14736741
  • Fleming, A., Kishida, M.G., Kimmel, C.B., Keynes, R.J., Building the backbone: The development and evolution of vertebral patterning (2015) Development, 142, pp. 1733-1744. , https://doi.org/10.1242/dev.118950, 25968309
  • Geurtzen, K., Knopf, F., Wehner, D., Huitema, L.F.A., Schulte-Merker, S., Weidinger, G., Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull (2014) Development, 141, pp. 2225-2234. , https://doi.org/10.1242/dev.105817
  • Gray, R.S., Wilm, T.P., Smith, J., Bagnat, M., Dale, R.M., Topczewski, J., Johnson, S.L., Solnica-Krezel, L., Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations (2014) Developmental Biology, 386, pp. 72-85. , https://doi.org/10.1016/j.ydbio.2013.11.028, 24333517
  • Grotmol, S., Kryvi, H., Nordvik, K., Totland, G.K., Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon (2003) Anatomy and Embryology, 207, pp. 263-272. , https://doi.org/10.1007/s00429-003-0349-y, 14574572
  • Hanisch, A., Holder, M.V., Choorapoikayil, S., Gajewski, M., Özbudak, E.M., Lewis, J., The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock (2013) Development, 140, pp. 444-453. , 23250218
  • Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T., Kageyama, R., Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene (2013) Cell Reports, 3, pp. 1-7
  • Henry, C.A., Urban, M.K., Dill, K.K., Merlie, J.P., Page, M.F., Kimmel, C.B., Amacher, S.L., Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries (2002) Development, 129, pp. 3693-3704. , 12117818
  • Holley, S.A., Geisler, R., Nüsslein-Volhard, C., Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity (2000) Genes & Development, 14, pp. 1678-1690. , 10887161
  • Huitema, L.F., Apschner, A., Logister, I., Spoorendonk, K.M., Bussmann, J., Hammond, C.L., Schulte-Merker, S., Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish (2012) PNAS, 109, pp. 21372-21377. , https://doi.org/10.1073/pnas.1214231110, 23236130
  • Inohaya, K., Takano, Y., Kudo, A., The teleost intervertebral region acts as a growth center of the centrum: In vivo visualization of osteoblasts and their progenitors in transgenic fish (2007) Developmental Dynamics, 236, pp. 3031-3046. , https://doi.org/10.1002/dvdy.21329, 17907202
  • Kaneko, T., Freeha, K., Wu, X., Mogi, M., Uji, S., Yokoi, H., Suzuki, T., Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: Histological and gene expression analyses (2016) Cell and Tissue Research, 366, pp. 37-49. , https://doi.org/10.1007/s00441-016-2404-z, 27106720
  • Krol, A.J., Roellig, D., Dequéant, M.L., Tassy, O., Glynn, E., Hattem, G., Mushegian, A., Pourquié, O., Evolutionary plasticity of segmentation clock networks (2011) Development, 138, pp. 2783-2792. , 21652651
  • Laerm, J., The development, function, and design of amphicoelous vertebrae in teleost fishes1 (1976) Zoological Journal of the Linnean Society, 58, pp. 237-254. , https://doi.org/10.1111/j.1096-3642.1976.tb00830.x
  • Laerm, J., The origin and homology of the chondrostean vertebral centrum (1979) Canadian Journal of Zoology, 57, pp. 475-485. , https://doi.org/10.1139/z79-058
  • Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., Kageyama, R., Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells (2006) PNAS, 103, pp. 1313-1318. , https://doi.org/10.1073/pnas.0508658103, 16432209
  • Melby, A.E., Warga, R.M., Kimmel, C.B., Specification of cell fates at the dorsal margin of the zebrafish gastrula (1996) Development, 122, pp. 2225-2237. , 8681803
  • Morin-Kensicki, E.M., Melancon, E., Eisen, J.S., Segmental relationship between somites and vertebral column in zebrafish (2002) Development, 129, pp. 3851-3860. , 12135923
  • Murray, J.D., (1993) Mathematical Biology II: Spatial Models and Biomedical Applications, , 3rd edn. Springer
  • Müller, M., Weizsäcker, E., Campos-Ortega, J.A., Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites (1996) Development, 122, pp. 2071-2078. , 8681788
  • Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., Araki, K., Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites (2002) Nature Genetics, 31, pp. 195-199. , https://doi.org/10.1038/ng899, 12021786
  • Oates, A.C., Ho, R.K., Hairy/E(Spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish (2002) Development, 129, pp. 2929-2946. , 12050140
  • Oates, A.C., Rohde, L.A., Ho, R.K., Generation of segment polarity in the paraxial mesoderm of the zebrafish through a T-box-dependent inductive event (2005) Developmental Biology, 283, pp. 204-214. , https://doi.org/10.1016/j.ydbio.2005.04.012, 15921674
  • Preibisch, S., Saalfeld, S., Tomancak, P., Globally optimal stitching of tiled 3D microscopic image acquisitions (2009) Bioinformatics, 25, pp. 1463-1465. , https://doi.org/10.1093/bioinformatics/btp184, 19346324
  • Renn, J., Büttner, A., To, T.T., Chan, S.J., Winkler, C., A col10a1:NlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization (2013) Developmental Biology, 381, pp. 134-143. , https://doi.org/10.1016/j.ydbio.2013.05.030, 23769979
  • Sarrazin, A.F., Peel, A.D., Averof, M., A segmentation clock with two-segment periodicity in insects (2012) Science, 336, pp. 338-341. , https://doi.org/10.1126/science.1218256, 22403177
  • Sawada, A., Fritz, A., Jiang, Y.J., Yamamoto, A., Yamasu, K., Kuroiwa, A., Saga, Y., Takeda, H., Zebrafish Mesp family genes, mesp-a and mesp-b are segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites (2000) Development, 127, pp. 1691-1702. , 10725245
  • Schröter, C., Ares, S., Morelli, L.G., Isakova, A., Hens, K., Soroldoni, D., Gajewski, M., Oates, A.C., Topology and dynamics of the zebrafish segmentation clock core circuit (2012) Plos Biology, 10. , 22911291
  • Schröter, C., Oates, A.C., Segment number and axial identity in a segmentation clock period mutant (2010) Current Biology, 20, pp. 1254-1258. , https://doi.org/10.1016/j.cub.2010.05.071, 20637625
  • Shimojo, H., Kageyama, R., Making waves toward the shore by synchronicity (2016) Developmental Cell, 36, pp. 358-359. , https://doi.org/10.1016/j.devcel.2016.02.003, 26906731
  • Soroldoni, D., Jörg, D.J., Morelli, L.G., Richmond, D.L., Schindelin, J., Jülicher, F., Oates, A.C., Genetic oscillations. A Doppler effect in embryonic pattern formation (2014) Science, 345, pp. 222-227
  • Spoorendonk, K.M., Peterson-Maduro, J., Renn, J., Trowe, T., Kranenbarg, S., Winkler, C., Schulte-Merker, S., Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton (2008) Development, 135, pp. 3765-3774. , https://doi.org/10.1242/dev.024034, 18927155
  • Stern, C.D., Keynes, R.J., Interactions between somite cells: The formation and maintenance of segment boundaries in the chick embryo (1987) Development, 99, pp. 261-272. , 3653002
  • van Eeden, F.J., Granato, M., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Nüsslein-Volhard, C., Mutations affecting somite formation and patterning in the zebrafish, Danio rerio (1996) Development, 123, pp. 153-164. , 9007237
  • van Eeden, F.J., Holley, S.A., Haffter, P., Nüsslein-Volhard, C., Zebrafish segmentation and pair-rule patterning (1998) Developmental Genetics, 23, pp. 65-76. , https://doi.org/10.1002/(SICI)1520-6408(1998)23:1<65::AID-DVG7>3.0.CO;2-4, 9706695
  • Wang, S., Kryvi, H., Grotmol, S., Wargelius, A., Krossøy, C., Epple, M., Neues, F., Totland, G.K., Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath (2013) Journal of Anatomy, 223, pp. 159-170. , 23711083
  • Wanglar, C., Takahashi, J., Yabe, T., Takada, S., Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply (2014) Plos ONE, 9. , 25259583
  • Williams, E.E., Gadow’s arcualia and the development of tetrapod vertebrae (1959) The Quarterly Review of Biology, 34, pp. 1-32
  • Windner, S.E., Doris, R.A., Ferguson, C.M., Nelson, A.C., Valentin, G., Tan, H., Oates, A.C., Devoto, S.H., Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish (2015) Development, 142, pp. 1159-1168. , https://doi.org/10.1242/dev.113431, 25725067
  • Wopat, S., Bagwell, J., Sumigray, K.D., Dickson, A.L., Huitema, L.F.A., Poss, K.D., Schulte-Merker, S., Bagnat, M., Spine patterning is guided by segmentation of the notochord sheath (2018) Cell Reports, 22, pp. 2026-2038
  • Yamamoto, A., Amacher, S.L., Kim, S.H., Geissert, D., Kimmel, C.B., de Robertis, E.M., Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm (1998) Development, 125, pp. 3389-3397. , 9693142
  • Yamamoto, M., Morita, R., Mizoguchi, T., Matsuo, H., Isoda, M., Ishitani, T., Chitnis, A.B., Itoh, M., Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions (2010) Development, 137, pp. 2527-2537. , https://doi.org/10.1242/dev.051011, 20573700
  • Yasutake, J., Inohaya, K., Kudo, A., Twist functions in vertebral column formation in medaka, Oryzias latipes (2004) Mechanisms of Development, 121, pp. 883-894. , https://doi.org/10.1016/j.mod.2004.03.008, 15210193
  • Yu, T., Graf, M., Renn, J., Schartl, M., Larionova, D., Huysseune, A., Witten, P.E., Winkler, C., A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka (2017) Development, 144, pp. 265-271. , https://doi.org/10.1242/dev.139550, 27993982

Citas:

---------- APA ----------
Lleras Forero, L., Narayanan, R., Huitema, L.F.A., Vanbergen, M., Apschner, A., Peterson-Maduro, J., Logister, I.,..., Schulte-Merker, S. (2018) . Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife, 7.
http://dx.doi.org/10.7554/eLife.33843
---------- CHICAGO ----------
Lleras Forero, L., Narayanan, R., Huitema, L.F.A., Vanbergen, M., Apschner, A., Peterson-Maduro, J., et al. "Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock" . eLife 7 (2018).
http://dx.doi.org/10.7554/eLife.33843
---------- MLA ----------
Lleras Forero, L., Narayanan, R., Huitema, L.F.A., Vanbergen, M., Apschner, A., Peterson-Maduro, J., et al. "Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock" . eLife, vol. 7, 2018.
http://dx.doi.org/10.7554/eLife.33843
---------- VANCOUVER ----------
Lleras Forero, L., Narayanan, R., Huitema, L.F.A., Vanbergen, M., Apschner, A., Peterson-Maduro, J., et al. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife. 2018;7.
http://dx.doi.org/10.7554/eLife.33843