Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic–pituitary–adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action. In addition, we present an overview of the pathophysiological role of the CRH system, which highlights the need for a precise definition of CRHRs signaling at molecular level to identify novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. © 2017 The authors Published by Bioscientifica Ltd.

Registro:

Documento: Artículo
Título:Endocrinology and the brain: Corticotropin-releasing hormone signaling
Autor:Inda, C.; Armando, N.G.; dos Santos Claro, P.A.; Silberstein, S.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
DFBMC, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:CAMP; CRH receptors signaling; CRH system pathophysiology; ERK1/2; GPCR endocytosis and signaling; beta 2 adrenergic receptor; beta arrestin; corticosteroid; corticotropin releasing factor; cyclic AMP; G protein coupled receptor; glucocorticoid; mitogen activated protein kinase 1; mitogen activated protein kinase 3; neurotransmitter; sauvagine; sphingosine 1 phosphate receptor; thyrotropin; urocortin; vasopressin receptor; brain; cognitive defect; cytology; desensitization; endocrinology; endocytosis; heart function; HEK293 cell line; hypothalamus hypophysis adrenal system; learning; liver; molecular biology; nerve cell plasticity; neuroblastoma cell; noradrenalin release; phosphorylation; placenta; priority journal; Review; stress
Año:2017
Volumen:6
Número:6
Página de inicio:R99
Página de fin:R120
DOI: http://dx.doi.org/10.1530/EC-17-0111
Título revista:Endocrine Connections
Título revista abreviado:Endocr. Connect.
ISSN:20493614
CAS:corticotropin releasing factor, 9015-71-8, 178359-01-8, 79804-71-0, 86297-72-5, 86784-80-7; cyclic AMP, 60-92-4; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; sauvagine, 74434-59-6; thyrotropin, 9002-71-5; urocortin, 193830-48-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20493614_v6_n6_pR99_Inda

Referencias:

  • De Kloet, E.R., Joels, M., Holsboer, F., Stress and the brain: From adaptation to disease (2005) Nature Reviews: Neuroscience, 6, pp. 463-475
  • Bale, T.L., Vale, W.W., CRF and CRF receptors: Role in stress responsivity and other behaviors (2004) Annual Review of Pharmacology and Toxicology, 44, pp. 525-557
  • Smith, G.W., Aubry, J.M., Dellu, F., Contarino, A., Bilezikjian, L.M., Gold, L.H., Chen, R., Bentley, C.A., Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development (1998) Neuron, 20, pp. 1093-1102
  • Korosi, A., Baram, T.Z., The central corticotropin releasing factor system during development and adulthood (2008) European Journal of Pharmacology, 583, pp. 204-214
  • Maras, P.M., Baram, T.Z., Sculpting the hippocampus from within: Stress, spines, and CRH (2012) Trends in Neurosciences, 35, pp. 315-324
  • Paez-Pereda, M., Hausch, F., Holsboer, F., Corticotropin releasing factor receptor antagonists for major depressive disorder (2011) Expert Opinion on Investigational Drugs, 20, pp. 519-535
  • Sanders, J., Nemeroff, C., The CRF system as a therapeutic target for neuropsychiatric disorders (2016) Trends in Pharmacological Sciences, 37, pp. 1045-1054
  • Vale, W., Spiess, J., Rivier, C., Rivier, J., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin (1981) Science, 213, pp. 1394-1397
  • Hauger, R.L., Risbrough, V., Brauns, O., Dautzenberg, F.M., Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: New molecular targets (2006) CNS and Neurological Disorders Drug Targets, 5, pp. 453-479
  • Hillhouse, E.W., Grammatopoulos, D.K., The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: Implications for physiology and pathophysiology (2006) Endocrine Reviews, 27, pp. 260-286
  • Arzt, E., Holsboer, F., CRF signaling: Molecular specificity for drug targeting in the CNS (2006) Trends in Pharmacological Sciences, 27, pp. 531-538
  • Sapolsky, R.M., Romero, L.M., Munck, A.U., How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions (2000) Endocrine Reviews, 21, pp. 55-89
  • Herman, J.P., Figueiredo, H., Mueller, N.K., Ulrich-Lai, Y., Ostrander, M.M., Choi, D.C., Cullinan, W.E., Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness (2003) Frontiers in Neuroendocrinology, 24, pp. 151-180
  • Quax, R.A., Manenschijn, L., Koper, J.W., Hazes, J.M., Lamberts, S.W., Van Rossum, E.F., Feelders, R.A., Glucocorticoid sensitivity in health and disease (2013) Nature Reviews: Endocrinology, 9, pp. 670-686
  • Britton, D.R., Koob, G.F., Rivier, J., Vale, W., Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty (1982) Life Sciences, 31, pp. 363-367
  • Sutton, R.E., Koob, G.F., Le Moal, M., Rivier, J., Vale, W., Corticotropin releasing factor produces behavioural activation in rats (1982) Nature, 297, pp. 331-333
  • Koob, G.F., Bloom, F.E., Corticotropin-releasing factor and behavior (1985) Federation Proceedings, 44, pp. 259-263
  • Dunn, A.J., File, S.E., Corticotropin-releasing factor has an anxiogenic action in the social interaction test (1987) Hormones and Behavior, 21, pp. 193-202
  • Eaves, M., Thatcher-Britton, K., Rivier, J., Vale, W., Koob, G.F., Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats (1985) Peptides, 6, pp. 923-926
  • Henckens, M.J., Deussing, J.M., Chen, A., Region-specific roles of the corticotropin-releasing factor-urocortin system in stress (2016) Nature Reviews: Neuroscience, 17, pp. 636-651
  • Gallagher, J.P., Orozco-Cabal, L.F., Liu, J., Shinnick-Gallagher, P., Synaptic physiology of central CRH system (2008) European Journal of Pharmacology, 583, pp. 215-225
  • Valentino, R.J., Van Bockstaele, E., Convergent regulation of locus coeruleus activity as an adaptive response to stress (2008) European Journal of Pharmacology, 583, pp. 194-203
  • Perez-Castro, C., Renner, U., Haedo, M.R., Stalla, G.K., Arzt, E., Cellular and molecular specificity of pituitary gland physiology (2012) Physiological Reviews, 92, pp. 1-38
  • Reul, J.M., Holsboer, F., Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression (2002) Current Opinion in Pharmacology, 2, pp. 23-33
  • Kovacs, K.J., CRH: The link between hormonal-, metabolic- and behavioral responses to stress (2013) Journal of Chemical Neuroanatomy, 54, pp. 25-33
  • Kratzer, S., Mattusch, C., Metzger, M.W., Dedic, N., Noll-Hussong, M., Kafitz, K.W., Eder, M., Kochs, E., Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels (2013) Frontiers in Cellular Neuroscience, 7, p. 91
  • Jedema, H.P., Grace, A.A., Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro (2004) Journal of Neuroscience, 24, pp. 9703-9713
  • Tao, J., Zhang, Y., Soong, T.W., Li, S., Expression of urocortin 2 and its inhibitory effects on intracellular ca2+ via L-type voltage-gated calcium channels in rat pheochromocytoma (PC12) cells (2006) Neuropsychopharmacology, 31, pp. 2600-2609
  • Kim, Y., Park, M.K., Uhm, D.Y., Chung, S., Modulation of T-type Ca2+ channels by corticotropin-releasing factor through protein kinase C pathway in MN9D dopaminergic cells (2007) Biochemical and Biophysical Research Communications, 358, pp. 796-801
  • Tao, J., Hildebrand, M.E., Liao, P., Liang, M.C., Tan, G., Li, S., Snutch, T.P., Soong, T.W., Activation of corticotropin-releasing factor receptor 1 selectively inhibits CaV3.2 T-type calcium channels (2008) Molecular Pharmacology, 73, pp. 1596-1609
  • Joels, M., Baram, T.Z., The neuro-symphony of stress (2009) Nature Reviews: Neuroscience, 10, pp. 459-466
  • Chang, C.L., Hsu, S.Y., Ancient evolution of stress-regulating peptides in vertebrates (2004) Peptides, 25, pp. 1681-1688
  • Dautzenberg, F.M., Hauger, R.L., The CRF peptide family and their receptors: Yet more partners discovered (2002) Trends in Pharmacological Sciences, 23, pp. 71-77
  • Waters, R.P., Rivalan, M., Bangasser, D.A., Deussing, J.M., Ising, M., Wood, S.K., Holsboer, F., Summers, C.H., Evidence for the role of corticotropin-releasing factor in major depressive disorder (2015) Neuroscience and Biobehavioral Reviews, 58, pp. 63-78
  • Gourcerol, G., Wu, S.V., Yuan, P.Q., Pham, H., Miampamba, M., Larauche, M., Sanders, P., Im, E., Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents (2011) Gastroenterology, 140, pp. e1586-e1596
  • Hasdemir, B., Mahajan, S., Bunnett, N.W., Liao, M., Bhargava, A., Endothelin-converting enzyme-1 actions determine differential trafficking and signaling of corticotropin-releasing factor receptor 1 at high agonist concentrations (2012) Molecular Endocrinology, 26, pp. 681-695
  • Potter, E., Behan, D.P., Fischer, W.H., Linton, E.A., Lowry, P.J., Vale, W.W., Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor-binding proteins (1991) Nature, 349, pp. 423-426
  • Westphal, N.J., Seasholtz, A.F., CRH-BP: The regulation and function of a phylogenetically conserved binding protein (2006) Frontiers in Bioscience, 11, pp. 1878-1891
  • Trainer, P.J., Woods, R.J., Korbonits, M., Popovic, V., Stewart, P.M., Lowry, P.J., Grossman, A.B., The pathophysiology of circulating corticotropin-releasing hormone-binding protein levels in the human (1998) Journal of Clinical Endocrinology and Metabolism, 83, pp. 1611-1614
  • Slater, P.G., Cerda, C.A., Pereira, L.A., Andres, M.E., Gysling, K., CRF binding protein facilitates the presence of CRF type 2alpha receptor on the cell surface (2016) PNAS, 113, pp. 4075-4080
  • Lagerstrom, M.C., Schioth, H.B., Structural diversity of G protein-coupled receptors and significance for drug discovery (2008) Nature Reviews Drug Discovery, 7, pp. 339-357
  • Culhane, K.J., Liu, Y., Cai, Y., Yan, E.C., Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors (2015) Frontiers in Pharmacology, 6, p. 264
  • Grace, C.R., Perrin, M.H., Gulyas, J., Digruccio, M.R., Cantle, J.P., Rivier, J.E., Vale, W.W., Riek, R., Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand (2007) PNAS, 104, pp. 4858-4863
  • Pioszak, A.A., Parker, N.R., Suino-Powell, K., Xu, H.E., Molecular recognition of corticotropin-releasing factor by its G-protein-coupled receptor CRFR1 (2008) Journal of Biological Chemistry, 283, pp. 32900-32912
  • Grace, C.R., Perrin, M.H., Gulyas, J., Rivier, J.E., Vale, W.W., Riek, R., NMR structure of the first extracellular domain of corticotropin-releasing factor receptor 1 (ECD1-CRF-R1) complexed with a high affinity agonist (2010) Journal of Biological Chemistry, 285, pp. 38580-38589
  • Pal, K., Swaminathan, K., He, X., Pioszak, A.A., Structural basis for hormone recognition by the Human CRFR2(alpha) G protein-coupled receptor (2010) Journal of Biological Chemistry, 285, pp. 40351-40361
  • Rutz, C., Renner, A., Alken, M., Schulz, K., Beyermann, M., Wiesner, B., Rosenthal, W., Schulein, R., The corticotropin-releasing factor receptor type 2a contains an N-terminal pseudo signal peptide (2006) Journal of Biological Chemistry, 281, pp. 24910-24921
  • Schulz, K., Rutz, C., Westendorf, C., Ridelis, I., Vogelbein, S., Furkert, J., Schmidt, A., Schulein, R., The pseudo signal peptide of the corticotropin-releasing factor receptor type 2a decreases receptor expression and prevents Gi-mediated inhibition of adenylyl cyclase activity (2010) Journal of Biological Chemistry, 285, pp. 32878-32887
  • Slater, P.G., Yarur, H.E., Gysling, K., Corticotropin-releasing factor receptors and their interacting proteins: Functional consequences (2016) Molecular Pharmacology, 90, pp. 627-632
  • Gkountelias, K., Tselios, T., Venihaki, M., Deraos, G., Lazaridis, I., Rassouli, O., Gravanis, A., Liapakis, G., Alanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding (2009) Molecular Pharmacology, 75, pp. 793-800
  • Teichmann, A., Rutz, C., Kreuchwig, A., Krause, G., Wiesner, B., Schulein, R., The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization (2012) Journal of Biological Chemistry, 287, pp. 27265-27274
  • Holsboer, F., Ising, M., Stress hormone regulation: Biological role and translation into therapy (2010) Annual Review of Psychology, 61, pp. C101-C111
  • Beurel, E., Nemeroff, C.B., Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour (2014) Current Topics in Behavioral Neurosciences, 18, pp. 67-80
  • Birnbaumer, M., Vasopressin receptors (2000) Trends in Endocrinology and Metabolism, 11, pp. 406-410
  • Abou-Samra, A.B., Harwood, J.P., Manganiello, V.C., Catt, K.J., Aguilera, G., Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells. Mechanisms of action (1987) Journal of Biological Chemistry, 262, pp. 1129-1136
  • Cornett, L.E., Kang, S.W., Kuenzel, W.J., A possible mechanism contributing to the synergistic action of vasotocin (VT) and corticotropin-releasing hormone (CRH) receptors on corticosterone release in birds (2013) General and Comparative Endocrinology, 188, pp. 46-53
  • Mikhailova, M.V., Mayeux, P.R., Jurkevich, A., Kuenzel, W.J., Madison, F., Periasamy, A., Chen, Y., Cornett, L.E., Heterooligomerization between vasotocin and corticotropin-releasing hormone (CRH) receptors augments CRH-stimulated 3′,5′-cyclic adenosine monophosphate production (2007) Molecular Endocrinology, 21, pp. 2178-2188
  • Young, S.F., Griffante, C., Aguilera, G., Dimerization between vasopressin V1b and corticotropin releasing hormone type 1 receptors (2007) Cellular and Molecular Neurobiology, 27, pp. 439-461
  • Murat, B., Devost, D., Andres, M., Mion, J., Boulay, V., Corbani, M., Zingg, H.H., Guillon, G., V1b and CRHR1 receptor heterodimerization mediates synergistic biological actions of vasopressin and CRH (2012) Molecular Endocrinology, 26, pp. 502-520
  • Wanat, M.J., Hopf, F.W., Stuber, G.D., Phillips, P.E., Bonci, A., Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih (2008) Journal of Physiology, 586, pp. 2157-2170
  • Hahn, J., Hopf, F.W., Bonci, A., Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons (2009) Journal of Neuroscience, 29, pp. 6535-6544
  • Fuenzalida, J., Galaz, P., Araya, K.A., Slater, P.G., Blanco, E.H., Campusano, J.M., Ciruela, F., Gysling, K., Dopamine D1 and corticotrophin-releasing hormone type-2alpha receptors assemble into functionally interacting complexes in living cells (2014) British Journal of Pharmacology, 171, pp. 5650-5664
  • Navarro, G., Quiroz, C., Moreno-Delgado, D., Sierakowiak, A., McDowell, K., Moreno, E., Rea, W., Howell, L.A., Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine (2015) Journal of Neuroscience, 35, pp. 6639-6653
  • Magalhaes, A.C., Holmes, K.D., Dale, L.B., Comps-Agrar, L., Lee, D., Yadav, P.N., Drysdale, L., Ferguson, S.S., CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling (2010) Nature Neuroscience, 13, pp. 622-629
  • Markovic, D., Punn, A., Lehnert, H., Grammatopoulos, D.K., Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2beta endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling cascades (2008) Molecular Endocrinology, 22, pp. 689-706
  • Bender, J., Engeholm, M., Ederer, M.S., Breu, J., Moller, T.C., Michalakis, S., Rasko, T., Martinez, K.L., Corticotropin-releasing hormone receptor type 1 (CRHR1) clustering with MAGUKs is mediated via its C-terminal PDZ binding motif (2015) Plos ONE, 10
  • Dunn, H.A., Chahal, H.S., Caetano, F.A., Holmes, K.D., Yuan, G.Y., Parikh, R., Heit, B., Ferguson, S.S., PSD-95regulates CRFR1 localization, trafficking and beta-arrestin2 recruitment (2016) Cellular Signalling, 28, pp. 531-540
  • Marcinkiewcz, C.A., Mazzone, C.M., D'agostino, G., Halladay, L.R., Hardaway, J.A., Diberto, J.F., Navarro, M., Dorrier, C.E., Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala (2016) Nature, 537, pp. 97-101
  • Hollenstein, K., Kean, J., Bortolato, A., Cheng, R.K., Dore, A.S., Jazayeri, A., Cooke, R.M., Marshall, F.H., Structure of class B GPCR corticotropin-releasing factor receptor 1 (2013) Nature, 499, pp. 438-443
  • Siu, F.Y., He, M., De Graaf, C., Han, G.W., Yang, D., Zhang, Z., Zhou, C., Joseph, J.S., Structure of the human glucagon class B G-protein-coupled receptor (2013) Nature, 499, pp. 444-449
  • Wootten, D., Miller, L.J., Koole, C., Christopoulos, A., Sexton, P.M., Allostery and biased agonism at class B G protein-coupled receptors (2017) Chemical Reviews, 117, pp. 111-138
  • Liang, Y.L., Khoshouei, M., Radjainia, M., Zhang, Y., Glukhova, A., Tarrasch, J., Thal, D.M., Coudrat, T., Phase-plate cryo-EM structure of a class B GPCR-G-protein complex (2017) Nature, 546, pp. 118-123
  • Rosenbaum, D.M., Rasmussen, S.G., Kobilka, B.K., The structure and function of G-protein-coupled receptors (2009) Nature, 459, pp. 356-363
  • Latorraca, N.R., Venkatakrishnan, A.J., Dror, R.O., GPCR dynamics: Structures in motion (2017) Chemical Reviews, 117, pp. 139-155
  • Vilardaga, J.P., Jean-Alphonse, F.G., Gardella, T.J., Endosomal generation of cAMP in GPCR signaling (2014) Nature Chemical Biology, 10, pp. 700-706
  • Irannejad, R., Von Zastrow, M., GPCR signaling along the endocytic pathway (2014) Current Opinion in Cell Biology, 27, pp. 109-116
  • Pavlos, N.J., Friedman, P.A., GPCR signaling and trafficking: The long and short of it (2016) Trends in Endocrinology and Metabolism, 28, pp. 213-226
  • Grammatopoulos, D.K., Dai, Y., Randeva, H.S., Levine, M.A., Karteris, E., Easton, A.J., Hillhouse, E.W., A novel spliced variant of the type 1 corticotropin-releasing hormone receptor with a deletion in the seventh transmembrane domain present in the human pregnant term myometrium and fetal membranes (1999) Molecular Endocrinology, 13, pp. 2189-2202
  • Papadopoulou, N., Chen, J., Randeva, H.S., Levine, M.A., Hillhouse, E.W., Grammatopoulos, D.K., Protein kinase A-induced negative regulation of the corticotropin-releasing hormone R1alpha receptor-extracellularly regulated kinase signal transduction pathway: The critical role of Ser301 for signaling switch and selectivity (2004) Molecular Endocrinology, 18, pp. 624-639
  • Wietfeld, D., Heinrich, N., Furkert, J., Fechner, K., Beyermann, M., Bienert, M., Berger, H., Regulation of the coupling to different G proteins of rat corticotropin-releasing factor receptor type 1 in human embryonic kidney 293 cells (2004) Journal of Biological Chemistry, 279, pp. 38386-38394
  • Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P., Ernst, O.P., Crystal structure of opsin in its G-protein- interacting conformation (2008) Nature, 455, pp. 497-502
  • Choe, H.W., Kim, Y.J., Park, J.H., Morizumi, T., Pai, E.F., Krauss, N., Hofmann, K.P., Ernst, O.P., Crystal structure of metarhodopsin II (2011) Nature, 471, pp. 651-655
  • Rasmussen, S.G., Devree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Calinski, D., Crystal structure of the beta2 adrenergic receptor-Gs protein complex (2011) Nature, 477, pp. 549-555
  • Punn, A., Chen, J., Delidaki, M., Tang, J., Liapakis, G., Lehnert, H., Levine, M.A., Grammatopoulos, D.K., Mapping structural determinants within third intracellular loop that direct signaling specificity of type 1 corticotropin-releasing hormone receptor (2012) Journal of Biological Chemistry, 287, pp. 8974-8985
  • Sutherland, E.W., Rall, T.W., Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles (1958) Journal of Biological Chemistry, 232, pp. 1077-1091
  • De Herder, W.W., Heroes in endocrinology: Nobel prizes (2014) Endocrine Connections, 3, pp. RR94-R104
  • Buxton, I.L., Brunton, L.L., Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes (1983) Journal of Biological Chemistry, 258, pp. 10233-10239
  • Teli, T., Markovic, D., Levine, M.A., Hillhouse, E.W., Grammatopoulos, D.K., Regulation of corticotropin-releasing hormone receptor type 1alpha signaling: Structural determinants for G protein-coupled receptor kinase-mediated phosphorylation and agonist-mediated desensitization (2005) Molecular Endocrinology, 19, pp. 474-490
  • Inda, C., Dos Santos Claro, P.A., Bonfiglio, J.J., Senin, S.A., Maccarronex, G., Turck, C.W., Silberstein, S., Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling (2016) Journal of Cell Biology, 214, pp. 181-195
  • Inda, C., Bonfiglio, J.J., Dos Santos Claro, P.A., Senin, S.A., Armando, N.G., Deussing, J.M., Silberstein, S., CAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells (2017) Scientific Reports, 7, p. 1944
  • Cooper, D.M., Tabbasum, V.G., Adenylate cyclase-centred microdomains (2014) Biochemical Journal, 462, pp. 199-213
  • Willoughby, D., Cooper, D.M., Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains (2007) Physiological Reviews, 87, pp. 965-1010
  • Chen, Y., Cann, M.J., Litvin, T.N., Iourgenko, V., Sinclair, M.L., Levin, L.R., Buck, J., Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor (2000) Science, 289, pp. 625-628
  • Jaiswal, B.S., Conti, M., Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa (2003) PNAS, 100, pp. 10676-10681
  • Litvin, T.N., Kamenetsky, M., Zarifyan, A., Buck, J., Levin, L.R., Kinetic properties of ‘soluble’ adenylyl cyclase. Synergism between calcium and bicarbonate (2003) Journal of Biological Chemistry, 278, pp. 15922-15926
  • Tresguerres, M., Levin, L.R., Buck, J., Intracellular cAMP signaling by soluble adenylyl cyclase (2011) Kidney International, 79, pp. 1277-1288
  • Halm, S.T., Zhang, J., Halm, D.R., Beta-Adrenergic activation of electrogenic K+ and Cl− secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways (2010) American Journal of Physiology: Gastrointestinal and Liver Physiology, 299, pp. G81-G95
  • Chen, J., Martinez, J., Milner, T.A., Buck, J., Levin, L.R., Neuronal expression of soluble adenylyl cyclase in the mammalian brain (2013) Brain Research, 1518, pp. 1-8
  • Stiles, T.L., Kapiloff, M.S., Goldberg, J.L., The role of soluble adenylyl cyclase in neurite outgrowth (2014) Biochimica Et Biophysica Acta, 1842, pp. 2561-2568
  • Ivonnet, P., Salathe, M., Conner, G.E., Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling (2015) British Journal of Pharmacology, 172, pp. 173-184
  • Zaccolo, M., Pozzan, T., CAMP and Ca2+ interplay: A matter of oscillation patterns (2003) Trends in Neurosciences, 26, pp. 53-55
  • Tojima, T., Hines, J.H., Henley, J.R., Kamiguchi, H., Second messengers and membrane trafficking direct and organize growth cone steering (2011) Nature Reviews: Neuroscience, 12, pp. 191-203
  • Kovalovsky, D., Refojo, D., Liberman, A.C., Hochbaum, D., Pereda, M.P., Coso, O.A., Stalla, G.K., Arzt, E., Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways (2002) Molecular Endocrinology, 16, pp. 1638-1651
  • Markovic, D., Punn, A., Lehnert, H., Grammatopoulos, D.K., Molecular determinants and feedback circuits regulating type 2 CRH receptor signal integration (2011) Biochimica Et Biophysica Acta, 1813, pp. 896-907
  • Bonfiglio, J.J., Inda, C., Senin, S., Maccarrone, G., Refojo, D., Giacomini, D., Turck, C.W., Silberstein, S., B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 Cells (2013) Molecular Endocrinology, 27, pp. 491-510
  • Van Kolen, K., Dautzenberg, F.M., Verstraeten, K., Royaux, I., De Hoogt, R., Gutknecht, E., Peeters, P.J., Corticotropin releasing factor-induced ERK phosphorylation in AtT20 cells occurs via a cAMP-dependent mechanism requiring EPAC2 (2010) Neuropharmacology, 58, pp. 135-144
  • Bonfiglio, J.J., Inda, C., Refojo, D., Holsboer, F., Arzt, E., Silberstein, S., The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: Molecular and cellular mechanisms involved (2011) Neuroendocrinology, 94, pp. 12-20
  • Refojo, D., Echenique, C., Muller, M.B., Reul, J.M., Deussing, J.M., Wurst, W., Sillaber, I., Arzt, E., Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas (2005) PNAS, 102, pp. 6183-6188
  • Matallanas, D., Birtwistle, M., Romano, D., Zebisch, A., Rauch, J., Von Kriegsheim, A., Kolch, W., Raf family kinases: Old dogs have learned new tricks (2011) Genes and Cancer, 2, pp. 232-260
  • Baljuls, A., Kholodenko, B.N., Kolch, W., It takes two to tango– signalling by dimeric Raf kinases (2013) Molecular Biosystem, 9, pp. 551-558
  • Shenoy, S.K., Lefkowitz, R.J., Beta-Arrestin-mediated receptor trafficking and signal transduction (2011) Trends in Pharmacological Sciences, 32, pp. 521-533
  • Cibelli, G., Corsi, P., Diana, G., Vitiello, F., Thiel, G., Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways (2001) European Journal of Neuroscience, 13, pp. 1339-1348
  • Emery, A.C., Eiden, M.V., Mustafa, T., Eiden, L.E., Rapgef2 connects GPCR-mediated cAMP signals to ERK activation in neuronal and endocrine cells (2013) Science Signal, 6, p. 51
  • Grammatopoulos, D.K., Randeva, H.S., Levine, M.A., Katsanou, E.S., Hillhouse, E.W., Urocortin, but not corticotropin-releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: An effect mediated via R1alpha and R2beta CRH receptor subtypes and stimulation of Gq-proteins (2000) Molecular Endocrinology, 14, pp. 2076-2091
  • Graziani, G., Tentori, L., Muzi, A., Vergati, M., Tringali, G., Pozzoli, G., Navarra, P., Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH- R1 receptor subtype (2007) Molecular and Cellular Endocrinology, 264, pp. 44-49
  • Takai, Y., Sasaki, T., Matozaki, T., Small GTP-binding proteins (2001) Physiological Reviews, 81, pp. 153-208
  • Swinny, J.D., Valentino, R.J., Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat (2006) European Journal of Neuroscience, 24, pp. 2481-2490
  • Swinny, J.D., Metzger, F., Ijkema-Paassen, J., Gounko, N.V., Gramsbergen, A., Van Der Want, J.J., Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro (2004) European Journal of Neuroscience, 19, pp. 1749-1758
  • Chen, Y., Bender, R.A., Brunson, K.L., Pomper, J.K., Grigoriadis, D.E., Wurst, W., Baram, T.Z., Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus (2004) PNAS, 101, pp. 15782-15787
  • Gounko, N.V., Swinny, J.D., Kalicharan, D., Jafari, S., Corteen, N., Seifi, M., Bakels, R., Van Der Want, J.J., Corticotropin-releasing factor and urocortin regulate spine and synapse formation: Structural basis for stress-induced neuronal remodeling and pathology (2013) Molecular Psychiatry, 18, pp. 86-92
  • Khan, S.M., Sleno, R., Gora, S., Zylbergold, P., Laverdure, J.P., Labbe, J.C., Miller, G.J., Hebert, T.E., The expanding roles of Gbetagamma subunits in G protein-coupled receptor signaling and drug action (2013) Pharmacological Reviews, 65, pp. 545-577
  • Sternweis, P.C., The purified alpha subunits of Go and Gi from bovine brain require beta gamma for association with phospholipid vesicles (1986) Journal of Biological Chemistry, 261, pp. 631-637
  • Crespo, P., Cachero, T.G., Xu, N., Gutkind, J.S., Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition (1995) Journal of Biological Chemistry, 270, pp. 25259-25265
  • Crespo, P., Xu, N., Simonds, W.F., Gutkind, J.S., Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits (1994) Nature, 369, pp. 418-420
  • Coso, O.A., Teramoto, H., Simonds, W.F., Gutkind, J.S., Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway (1996) Journal of Biological Chemistry, 271, pp. 3963-3966
  • Punn, A., Levine, M.A., Grammatopoulos, D.K., Identification of signaling molecules mediating corticotropin-releasing hormone-R1alpha-mitogen-activated protein kinase (MAPK) interactions: The critical role of phosphatidylinositol 3-kinase in regulating ERK1/2 but not p38 MAPK activation (2006) Molecular Endocrinology, 20, pp. 3179-3195
  • Stern, C.M., Meitzen, J., Mermelstein, P.G., Corticotropin-releasing factor and urocortin I activate CREB through functionally selective Gbetagamma signaling in hippocampal pyramidal neurons (2011) European Journal of Neuroscience, 34, pp. 671-681
  • Stern, C.M., Luoma, J.I., Meitzen, J., Mermelstein, P.G., Corticotropin releasing factor-induced CREB activation in striatal neurons occurs via a novel Gbetagamma signaling pathway (2011) Plos ONE, 6
  • Wehbi, V.L., Stevenson, H.P., Feinstein, T.N., Calero, G., Romero, G., Vilardaga, J.P., Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gbetagamma complex (2013) PNAS, 110, pp. 1530-1535
  • Jean-Alphonse, F.G., Wehbi, V.L., Chen, J., Noda, M., Taboas, J.M., Xiao, K., Vilardaga, J.P., Beta2-adrenergic receptor control of endosomal PTH receptor signaling via Gbetagamma (2017) Nature Chemical Biology, 13, pp. 259-261
  • Sigismund, S., Confalonieri, S., Ciliberto, A., Polo, S., Scita, G., Di Fiore, P.P., Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan (2012) Physiological Reviews, 92, pp. 273-366
  • Refojo, D., Schweizer, M., Kuehne, C., Ehrenberg, S., Thoeringer, C., Vogl, A.M., Dedic, N., Avrabos, C., Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1 (2011) Science, 333, pp. 1903-1907
  • Holmes, K.D., Babwah, A.V., Dale, L.B., Poulter, M.O., Ferguson, S.S., Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases (2006) Journal of Neurochemistry, 96, pp. 934-949
  • Hauger, R.L., Olivares-Reyes, J.A., Braun, S., Hernandez-Aranda, J., Hudson, C.C., Gutknecht, E., Dautzenberg, F.M., Oakley, R.H., Desensitization of human CRF2(A) receptor signaling governed by agonist potency and betaarrestin2 recruitment (2013) Regulatory Peptides, 186, pp. 62-76
  • Gutknecht, E., Hauger, R.L., Van Der Linden, I., Vauquelin, G., Dautzenberg, F.M., Expression, binding, and signaling properties of CRF2(A) receptors endogenously expressed in human retinoblastoma Y79 cells: Passage-dependent regulation of functional receptors (2008) Journal of Neurochemistry, 104, pp. 926-936
  • Valentino, R.J., Van Bockstaele, E., Bangasser, D., Sex-specific cell signaling: The corticotropin-releasing factor receptor model (2013) Trends in Pharmacological Sciences, 34, pp. 437-444
  • Kubat, E., Mahajan, S., Liao, M., Ackerman, L., Ohara, P.T., Grady, E.F., Bhargava, A., Corticotropin-releasing factor receptor 2 mediates sex-specific cellular stress responses (2013) Molecular Medicine, 19, pp. 212-222
  • Hasdemir, B., Mhaske, P., Paruthiyil, S., Garnett, E.A., Heyman, M.B., Matloubian, M., Bhargava, A., Sex- and corticotropin-releasing factor receptor 2- dependent actions of urocortin 1 during inflammation (2016) American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 310, pp. R1244-R1257
  • Benovic, J.L., Mayor, F., Jr., Somers, R.L., Caron, M.G., Lefkowitz, R.J., Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase (1986) Nature, 321, pp. 869-872
  • Moore, C.A., Milano, S.K., Benovic, J.L., Regulation of receptor trafficking by GRKs and arrestins (2007) Annual Review of Physiology, 69, pp. 451-482
  • Dautzenberg, F.M., Braun, S., Hauger, R.L., GRK3 mediates desensitization of CRF1 receptors: A potential mechanism regulating stress adaptation (2001) American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 280, pp. R935-R946
  • Kageyama, K., Hanada, K., Moriyama, T., Nigawara, T., Sakihara, S., Suda, T., G protein-coupled receptor kinase 2 involvement in desensitization of corticotropin-releasing factor (CRF) receptor type 1 by CRF in murine corticotrophs (2006) Endocrinology, 147, pp. 441-450
  • Perry, S.J., Junger, S., Kohout, T.A., Hoare, S.R., Struthers, R.S., Grigoriadis, D.E., Maki, R.A., Distinct conformations of the corticotropin releasing factor type 1 receptor adopted following agonist and antagonist binding are differentially regulated (2005) Journal of Biological Chemistry, 280, pp. 11560-11568
  • Hauger, R.L., Dautzenberg, F.M., Flaccus, A., Liepold, T., Spiess, J., Regulation of corticotropin-releasing factor receptor function in human Y-79 retinoblastoma cells: Rapid and reversible homologous desensitization but prolonged recovery (1997) Journal of Neurochemistry, 68, pp. 2308-2316
  • Roseboom, P.H., Urben, C.M., Kalin, N.H., Persistent corticotropin-releasing factor (1) receptor desensitization and downregulation in the human neuroblastoma cell line IMR-32 (2001) Brain Research: Molecular Brain Research, 92, pp. 115-127
  • Oakley, R.H., Olivares-Reyes, J.A., Hudson, C.C., Flores-Vega, F., Dautzenberg, F.M., Hauger, R.L., Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: A mechanism regulating stress and anxiety responses (2007) American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 293, pp. R209-R222
  • Goodman, O.B., Jr., Krupnick, J.G., Santini, F., Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H., Benovic, J.L., Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor (1996) Nature, 383, pp. 447-450
  • Gurevich, V.V., Gurevich, E.V., Arrestins: Critical players in trafficking of many GPCRs (2015) Progress in Molecular Biology and Translational Science, 132, pp. 1-14
  • Luttrell, L.M., Ferguson, S.S., Daaka, Y., Miller, W.E., Maudsley, S., Della Rocca, G.J., Lin, F., Luttrell, D.K., Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes (1999) Science, 283, pp. 655-661
  • Shenoy, S.K., Drake, M.T., Nelson, C.D., Houtz, D.A., Xiao, K., Madabushi, S., Reiter, E., Lefkowitz, R.J., Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor (2006) Journal of Biological Chemistry, 281, pp. 1261-1273
  • Rasmussen, T.N., Novak, I., Nielsen, S.M., Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment (2004) European Journal of Biochemistry, 271, pp. 4366-4374
  • Bangasser, D.A., Curtis, A., Reyes, B.A., Bethea, T.T., Parastatidis, I., Ischiropoulos, H., Van Bockstaele, E.J., Valentino, R.J., Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology (2010) Molecular Psychiatry, 15 (877), pp. 896-904
  • Defea, K.A., Vaughn, Z.D., O’Bryan, E.M., Nishijima, D., Dery, O., Bunnett, N.W., The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex (2000) PNAS, 97, pp. 11086-11091
  • Ahn, S., Shenoy, S.K., Wei, H., Lefkowitz, R.J., Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor (2004) Journal of Biological Chemistry, 279, pp. 35518-35525
  • Ge, L., Ly, Y., Hollenberg, M., Defea, K., A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis (2003) Journal of Biological Chemistry, 278, pp. 34418-34426
  • Hunton, D.L., Barnes, W.G., Kim, J., Ren, X.R., Violin, J.D., Reiter, E., Milligan, G., Lefkowitz, R.J., Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis (2005) Molecular Pharmacology, 67, pp. 1229-1236
  • Patel, P.A., Tilley, D.G., Rockman, H.A., Physiologic and cardiac roles of beta-arrestins (2009) Journal of Molecular and Cellular Cardiology, 46, pp. 300-308
  • Nuber, S., Zabel, U., Lorenz, K., Nuber, A., Milligan, G., Tobin, A.B., Lohse, M.J., Hoffmann, C., Beta-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle (2016) Nature, 531, pp. 661-664
  • Lee, M.H., Appleton, K.M., Strungs, E.G., Kwon, J.Y., Morinelli, T.A., Peterson, Y.K., Laporte, S.A., Luttrell, L.M., The conformational signature of beta-arrestin2 predicts its trafficking and signalling functions (2016) Nature, 531, pp. 665-668
  • Eichel, K., Jullie, D., Von Zastrow, M., Beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation (2016) Nature Cell Biology, 18, pp. 303-310
  • Magalhaes, A.C., Dunn, H., Ferguson, S.S., Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins (2012) British Journal of Pharmacology, 165, pp. 1717-1736
  • Couvineau, A., Laburthe, M., The family B1 GPCR: Structural aspects and interaction with accessory proteins (2012) Current Drug Targets, 13, pp. 103-115
  • Slessareva, J.E., Routt, S.M., Temple, B., Bankaitis, V.A., Dohlman, H.G., Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome (2006) Cell, 126, pp. 191-203
  • Ferrandon, S., Feinstein, T.N., Castro, M., Wang, B., Bouley, R., Potts, J.T., Gardella, T.J., Vilardaga, J.P., Sustained cyclic AMP production by parathyroid hormone receptor endocytosis (2009) Nature Chemical Biology, 5, pp. 734-742
  • Calebiro, D., Nikolaev, V.O., Gagliani, M.C., De Filippis, T., Dees, C., Tacchetti, C., Persani, L., Lohse, M.J., Persistent cAMP-signals triggered by internalized G-protein-coupled receptors (2009) Plos Biology, 7
  • Mullershausen, F., Zecri, F., Cetin, C., Billich, A., Guerini, D., Seuwen, K., Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors (2009) Nature Chemical Biology, 5, pp. 428-434
  • Kuna, R.S., Girada, S.B., Asalla, S., Vallentyne, J., Maddika, S., Patterson, J.T., Smiley, D.L., Mitra, P., Glucagon-like peptide-1 receptor-mediated endosomal cAMP generation promotes glucose-stimulated insulin secretion in pancreatic beta-cells (2013) American Journal of Physiology: Endocrinology and Metabolism, 305, pp. E161-E170
  • Merriam, L.A., Baran, C.N., Girard, B.M., Hardwick, J.C., May, V., Parsons, R.L., Pituitary adenylate cyclase 1 receptor internalization and endosomal signaling mediate the pituitary adenylate cyclase activating polypeptide-induced increase in guinea pig cardiac neuron excitability (2013) Journal of Neuroscience, 33, pp. 4614-4622
  • Feinstein, T.N., Yui, N., Webber, M.J., Wehbi, V.L., Stevenson, H.P., King, J.D., Jr., Hallows, K.R., Vilardaga, J.P., Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin (2013) Journal of Biological Chemistry, 288, pp. 27849-27860
  • Kotowski, S.J., Hopf, F.W., Seif, T., Bonci, A., Von Zastrow, M., Endocytosis promotes rapid dopaminergic signaling (2011) Neuron, 71, pp. 278-290
  • Irannejad, R., Tomshine, J.C., Tomshine, J.R., Chevalier, M., Mahoney, J.P., Steyaert, J., Rasmussen, S.G., Von Zastrow, M., Conformational biosensors reveal GPCR signalling from endosomes (2013) Nature, 495, pp. 534-538
  • Tsvetanova, N.G., Von Zastrow, M., Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis (2014) Nature Chemical Biology, 10, pp. 1061-1065
  • Shukla, A.K., Westfield, G.H., Xiao, K., Reis, R.I., Huang, L.Y., Tripathi-Shukla, P., Qian, J., Oleskie, A.N., Visualization of arrestin recruitment by a G-protein-coupled receptor (2014) Nature, 512, pp. 218-222
  • Szczepek, M., Beyriere, F., Hofmann, K.P., Elgeti, M., Kazmin, R., Rose, A., Bartl, F.J., Sommer, M.E., Crystal structure of a common GPCR-binding interface for G protein and arrestin (2014) Nature Communications, 5, p. 4801
  • Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., Han, G.W., Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser (2015) Nature, 523, pp. 561-567
  • Thomsen, A.R., Plouffe, B., Cahill, T.J., 3Rd, Shukla, A.K., Tarrasch, J.T., Dosey, A.M., Kahsai, A.W., Mahoney, J.P., GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling (2016) Cell, 166, pp. 907-919
  • Feinstein, T.N., Wehbi, V.L., Ardura, J.A., Wheeler, D.S., Ferrandon, S., Gardella, T.J., Vilardaga, J.P., Retromer terminates the generation of cAMP by internalized PTH receptors (2011) Nature Chemical Biology, 7, pp. 278-284
  • Caldieri, G., Sigismund, S., Spatial resolution of cAMP signaling by soluble adenylyl cyclase (2016) Journal of Cell Biology, 214, pp. 125-127
  • Bowman, S.L., Shiwarski, D.J., Puthenveedu, M.A., Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling (2016) Journal of Cell Biology, 214, pp. 797-806
  • Wang, G., Wei, Z., Wu, G., Role of Rab GTPases in the export trafficking of G protein-coupled receptors (2017) Small Gtpases, pp. 1-6
  • Gidon, A., Al-Bataineh, M.M., Jean-Alphonse, F.G., Stevenson, H.P., Watanabe, T., Louet, C., Khatri, A., Gardella, T.J., Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase (2014) Nature Chemical Biology, 10, pp. 707-709
  • Milan-Lobo, L., Gsandtner, I., Gaubitzer, E., Runzler, D., Buchmayer, F., Kohler, G., Bonci, A., Sitte, H.H., Subtype-specific differences in corticotropin-releasing factor receptor complexes detected by fluorescence spectroscopy (2009) Molecular Pharmacology, 76, pp. 1196-1210
  • Watson, R.L., Buck, J., Levin, L.R., Winger, R.C., Wang, J., Arase, H., Muller, W.A., Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration (2015) Journal of Experimental Medicine, 212, pp. 1021-1041
  • Namkung, Y., Le Gouill, C., Lukashova, V., Kobayashi, H., Hogue, M., Khoury, E., Song, M., Laporte, S.A., Monitoring G protein-coupled receptor and beta-arrestin trafficking in live cells using enhanced bystander BRET (2016) Nature Communications, 7, p. 12178
  • Lohse, M.J., Calebiro, D., Cell biology: Receptor signals come in waves (2013) Nature, 495, pp. 457-458
  • Van Gaalen, M.M., Stenzel-Poore, M.P., Holsboer, F., Steckler, T., Effects of transgenic overproduction of CRH on anxiety-like behaviour (2002) European Journal of Neuroscience, 15, pp. 2007-2015
  • Griebel, G., Holsboer, F., Neuropeptide receptor ligands as drugs for psychiatric diseases: The end of the beginning? (2012) Nature Reviews Drug Discovery, 11, pp. 462-478
  • Zorrilla, E.P., Valdez, G.R., Nozulak, J., Koob, G.F., Markou, A., Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat (2002) Brain Research, 952, pp. 188-199
  • Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J.M., Stalla, G.K., Blanquet, V., Wurst, W., Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1 (1998) Nature Genetics, 19, pp. 162-166
  • Bale, T.L., Contarino, A., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Lee, K.F., Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress (2000) Nature Genetics, 24, pp. 410-414
  • Coste, S.C., Kesterson, R.A., Heldwein, K.A., Stevens, S.L., Heard, A.D., Hollis, J.H., Murray, S.E., Hohimer, A.R., Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2 (2000) Nature Genetics, 24, pp. 403-409
  • Neufeld-Cohen, A., Tsoory, M.M., Evans, A.K., Getselter, D., Gil, S., Lowry, C.A., Vale, W.W., Chen, A., A triple urocortin knockout mouse model reveals an essential role for urocortins in stress recovery (2010) PNAS, 107, pp. 19020-19025
  • Shemesh, Y., Forkosh, O., Mahn, M., Anpilov, S., Sztainberg, Y., Manashirov, S., Shlapobersky, T., Ezra, G., Ucn3 and CRF-R2 in the medial amygdala regulate complex social dynamics (2016) Nature Neuroscience, 19, pp. 1489-1496
  • Regev, L., Baram, T.Z., Corticotropin releasing factor in neuroplasticity (2014) Frontiers in Neuroendocrinology, 35, pp. 171-179
  • Lemos, J.C., Wanat, M.J., Smith, J.S., Reyes, B.A., Hollon, N.G., Van Bockstaele, E.J., Chavkin, C., Phillips, P.E., Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive (2012) Nature, 490, pp. 402-406
  • Holsboer, F., The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety (1999) Journal of Psychiatric Research, 33, pp. 181-214
  • Binder, E.B., Nemeroff, C.B., The CRF system, stress, depression and anxiety-insights from human genetic studies (2010) Molecular Psychiatry, 15, pp. 574-588
  • Zorrilla, E.P., Logrip, M.L., Koob, G.F., Corticotropin releasing factor: A key role in the neurobiology of addiction (2014) Frontiers in Neuroendocrinology, 35, pp. 234-244
  • Raglan, G.B., Schmidt, L.A., Schulkin, J., The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment (2017) Endocrine Connections, 6, pp. R1-R7
  • Arborelius, L., Owens, M.J., Plotsky, P.M., Nemeroff, C.B., The role of corticotropin-releasing factor in depression and anxiety disorders (1999) Journal of Endocrinology, 160, pp. 1-12
  • Nemeroff, C.B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., Kilts, C.D., Vale, W., Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients (1984) Science, 226, pp. 1342-1344
  • Bremner, J.D., Licinio, J., Darnell, A., Krystal, J.H., Owens, M.J., Southwick, S.M., Nemeroff, C.B., Charney, D.S., Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder (1997) American Journal of Psychiatry, 154, pp. 624-629
  • De Bellis, M.D., Gold, P.W., Geracioti, T.D., Jr., Listwak, S.J., Kling, M.A., Association of fluoxetine treatment with reductions in CSF concentrations of corticotropin-releasing hormone and arginine vasopressin in patients with major depression (1993) American Journal of Psychiatry, 150, pp. 656-657
  • Heuser, I., Bissette, G., Dettling, M., Schweiger, U., Gotthardt, U., Schmider, J., Lammers, C.H., Holsboer, F., Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: Response to amitriptyline treatment (1998) Depression and Anxiety, 8, pp. 71-79
  • Merali, Z., Du, L., Hrdina, P., Palkovits, M., Faludi, G., Poulter, M.O., Anisman, H., Dysregulation in the suicide brain: MRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region (2004) Journal of Neuroscience, 24, pp. 1478-1485
  • Byers, A.L., Yaffe, K., Depression and risk of developing dementia (2011) Nature Reviews: Neurology, 7, pp. 323-331

Citas:

---------- APA ----------
Inda, C., Armando, N.G., dos Santos Claro, P.A. & Silberstein, S. (2017) . Endocrinology and the brain: Corticotropin-releasing hormone signaling. Endocrine Connections, 6(6), R99-R120.
http://dx.doi.org/10.1530/EC-17-0111
---------- CHICAGO ----------
Inda, C., Armando, N.G., dos Santos Claro, P.A., Silberstein, S. "Endocrinology and the brain: Corticotropin-releasing hormone signaling" . Endocrine Connections 6, no. 6 (2017) : R99-R120.
http://dx.doi.org/10.1530/EC-17-0111
---------- MLA ----------
Inda, C., Armando, N.G., dos Santos Claro, P.A., Silberstein, S. "Endocrinology and the brain: Corticotropin-releasing hormone signaling" . Endocrine Connections, vol. 6, no. 6, 2017, pp. R99-R120.
http://dx.doi.org/10.1530/EC-17-0111
---------- VANCOUVER ----------
Inda, C., Armando, N.G., dos Santos Claro, P.A., Silberstein, S. Endocrinology and the brain: Corticotropin-releasing hormone signaling. Endocr. Connect. 2017;6(6):R99-R120.
http://dx.doi.org/10.1530/EC-17-0111