Artículo

Muzzio, N.E.; Pasquale, M.A.; Marmisollé, W.A.; Von Bilderling, C.; Cortez, M.L.; Pietrasanta, L.I.; Azzaroni, O. "Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion" (2018) Biomaterials Science. 6(8):2230-2247
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The modulation of cell adhesion via biologically inspired materials plays a key role in the development of realistic platforms to envisage not only mechanistic descriptions of many physiological and pathological processes but also new biointerfacial designs compatible with the requirements of biomedical devices. In this work, we show that the cell adhesion and proliferation of three different cell lines can be easily manipulated by using a novel biologically inspired supramolecular coating generated via dip coating of the working substrates in an aqueous solution of polyallylamine in the presence of phosphate anions - a simple one-step modification procedure. Our results reveal that selective cell adhesion can be controlled by varying the deposition time of the coating. Cell proliferation experiments showed a cell type-dependent quasi-exponential growth demonstrating the nontoxic properties of the supramolecular platform. After reaching a certain surface coverage, the supramolecular films based on phosphate-polyamine networks displayed antiadhesive activity towards cells, irrespective of the cell type. However and most interestingly, these antiadherent substrates developed strong adhesive properties after thermal annealing at 37 °C for 3 days. These results were interpreted based on the changes in the coating hydrophilicity, topography and stiffness, with the latter being assessed by atomic force microscopy imaging and indentation experiments. The reported approach is simple, robust and flexible, and would offer opportunities for the development of tunable, biocompatible interfacial architectures to control cell attachment for various biomedical applications. © 2018 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion
Autor:Muzzio, N.E.; Pasquale, M.A.; Marmisollé, W.A.; Von Bilderling, C.; Cortez, M.L.; Pietrasanta, L.I.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4 Casilla de Correo 16, La Plata, 1900, Argentina
Instituto de Física de Buenos Aires (IFIBA UBA-CONICET), Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
Palabras clave:Atomic force microscopy; Biocompatibility; Cell adhesion; Cell culture; Cell proliferation; Coatings; Medical applications; Solutions; Supramolecular chemistry; Anti-adhesive activity; Biologically inspired; Biologically inspired material; Biomedical applications; Indentation experiment; Interfacial architecture; Pathological process; Supramolecular films; Cells; biocompatible coated material; biomimetic material; phosphate; polyamine; biomaterial; phosphate; polyamine; animal cell; Article; atomic force microscopy; biomimetics; C2C12 cell line; cell adhesion; cell interaction; cell nucleus; cell proliferation; chemical modification; contact angle; controlled study; cytoskeleton; epithelial cell line; female; focal adhesion; human; human cell; hydrophilicity; hydrophobicity; immunohistochemistry; limit of quantitation; MC3T3 cell line; mouse; nonhuman; priority journal; quartz crystal microbalance; rigidity; supramolecular chemistry; surface property; thickness; topography; 3T3 cell line; absorption; animal; cell adhesion; cell culture; cell survival; chemistry; HeLa cell line; kinetics; macromolecule; particle size; synthesis; wettability; 3T3 Cells; Absorption, Physiological; Animals; Biocompatible Materials; Cell Adhesion; Cell Proliferation; Cell Survival; Cells, Cultured; HeLa Cells; Humans; Kinetics; Macromolecular Substances; Mice; Microscopy, Atomic Force; Particle Size; Phosphates; Polyamines; Wettability
Año:2018
Volumen:6
Número:8
Página de inicio:2230
Página de fin:2247
DOI: http://dx.doi.org/10.1039/c8bm00265g
Título revista:Biomaterials Science
Título revista abreviado:Biomater. Sci.
ISSN:20474830
CAS:phosphate, 14066-19-4, 14265-44-2; Biocompatible Materials; Macromolecular Substances; Phosphates; Polyamines
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20474830_v6_n8_p2230_Muzzio

Referencias:

  • Monge, C., Almodóvar, J., Boudou, T., Picart, C., Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D (2015) Adv. Healthcare Mater., 4, p. 811
  • Murphy, N.P., Lampe, K.J., Mimicking Biological Phenomena in Hydrogel-based Biomaterials to Promote Dynamic Cellular Responses (2015) J. Mater. Chem. B, 3, p. 7867
  • Sciari, B.M., Londono, R., Badylak, S.F., Strategies for Skeletal Muscle Tissue Engineering: Seed vs. Soil (2015) J. Mater. Chem. B, 3, p. 7881
  • Bačáková, L., Filová, E., Rypáček, F., Švorčík, V., Starý, V., Cell Adhesion on Artificial Materials for Tissue Engineering (2004) Phys. Res., 53, p. S35
  • Williams, D.F., Biocompatibility Pathways: Biomaterials-Induced Stimuli Inflammation, Mechanotrasduction, and Principles of Biocompatibility Control (2017) ACS Biomater. Sci. Eng., 3, p. 2
  • Mih, J.D., Marinkovic, A., Liu, F., Sharif, A.S., Tschumperlin, D.J., Matrix stiffness reverses the effect of actomyosin tension on cell proliferation (2015) J. Cell Sci., 125, p. 5974
  • Rianna, C., Radmacher, M., Influence of Microenvironment Topography and Stiffness on the Mechanics and Motility of Normal and Cancer Renal Cells (2017) Nanoscale, 9, p. 11222
  • Buxboim, A., Ivanovska, I.L., Discher, D.E., Matrix Elasticity, Cytoskeletal Forces and Physics of the Nucleus: How Deeply do Cells 'Feel' Outside and in? (2010) J. Cell Sci., 123, p. 297
  • Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg, G.I., Gefen, A., Reinhart-King, C.A., Weaver, V.M., Tensional Homeostasis and the Malignant Phenotype (2005) Cancer Cell, 8, p. 241
  • Chang, H., Zhang, H., Hu, M., Chen, X.-Ch., Ren, K.-F., Wanga, J.-L., Ji, J., Surface Modulation of Complex Stiffness via layer-by-layer Assembly as a Facile Strategy for Selective Cell Adhesion (2015) Biomater. Sci., 3, p. 352
  • Mehrotra, S., Hunley, S.C., Pawelec, K.M., Zhang, L., Lee, I., Baek, S., Chan, C., Cell Adhesive Behavior on Thin Polyelectrolyte Multilayers: Cells Attempt to Achieve Homeostasis of Its Adhesion Energy (2010) Langmuir, 26, p. 12794
  • Bačáková, L., Filová, E., Parizek, M., Ruml, T., Švorčík, V., Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants (2011) Biotechnol. Adv., 29, p. 739
  • Anselme, K., Ploux, L., Ponche, A., Cell/Material Interfaces: Influence of Surface Chemistry and Surface Topography on Cell Adhesion (2010) J. Adhes. Sci. Technol., 24, p. 831
  • Engler, A., Bačáková, L., Newman, C., Hategan, A., Griffin, M., Discher, D., Substrate Compliance Versus Ligand Density in Cell on Gel Responses (2004) Biophys. J., 86, p. 617
  • Kharkar, P.M., Kiick, K.L., Kloxin, A.M., Designing Degradable Hydrogels for Orthogonal Control of Cell Microenvironments (2013) Chem. Soc. Rev., 42, p. 7335
  • Saxena, Sh., Spears, M.W., Jr., Yoshida, H., Gaulding, J.C., García, A.J., Lyon, A., Microgel Film Dynamics Modulate Cell Adhesion Behavior (2014) Soft Matter, 10, p. 1356
  • Ariga, K., (2012) Manipulation of Nanoscale Materials: An Introduction to Nanoarchitectonics, , ed., Royal Society of Chemistry, Cambridge,. 10.1039/9781849735124
  • Wang, H., Zhang, D.-W., Li, Z.-T., (2015) Hydrogen Bonded Supramolecular Materials, Lectures in Chemistry, p. 185. , ed. Z.-T. Li and L.-Z. Wu, Springer-Verlag, Berlin Heidelberg, p. 10.1007/978-3-662-45780-1-6
  • Simon, J., Bassoul, P., (2000) Design of Molecular Materials: Supramolecular Engineering, , John Wiley & Sons, Chichester,. ISBN 0-471-97371-8
  • Ye, Q., Zhou, F., Liu, W., Bioinspired Catecholic Chemistry for Surface Modification (2011) Chem. Soc. Rev., 40, p. 4244
  • Sedó, J., Saiz-Poseu, J., Busqué, F., Ruiz-Molina, D., (2013) Adv. Mater., 25, p. 653
  • Lee, B.P., Messersmith, P.B., Israelachvili, J.N., Waite, J.H., (2011) Annu. Rev. Mater. Res., 41, p. 99
  • Liu, Y., Ai, K., Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields (2014) Chem. Rev., 114, p. 5057
  • Han, L., Lu, X., Liu, K., Wang, K., Fang, L., Weng, L.-T., Zhang, H., Li, Z., Mussel-Inspired Adhesive and Tough Hydrogel Based Nanoclay Confined Dopamine Polymerization (2017) ACS Nano, 11, p. 2561
  • Marmisollé, W.A., Irigoyen, J., Gregurec, D., Moya, S., Azzaroni, O., Supramolecular Surface Chemistry: Substrate-Independent, Phosphate-Driven Growth of Polyamine-Based Multifunctional Thin Films (2015) Adv. Funct. Mater., 25, p. 4144
  • D'Agostino, L., Di Luccia, A., Polyamines Interact with DNA as Molecular Aggregates (2002) Eur. J. Biochem., 269, p. 4317
  • D'Agostino, L., Di Pietro, M., Di Luccia, A., Nuclear Aggregates of Polyamines are Supramolecular Structures that Play a Crucial Role in Genomic DNA Protection and Conformation (2005) FEBS J., 272, p. 3777
  • Kröger, N., Deutzman, R., Bergsdorf, C., Sumper, M., Species-specific Polyamines from Diatoms Control Silica Morphology (2000) Proc. Natl. Acad. Sci. U. S. A., 97, p. 14133
  • Cicco, S.R., Vona, D., Gristina, R., Sardella, E., Ragni, R., Lo Presti, M., Farinola, G.M., Biosilica from Living Diatoms: Investigations on Biocompatibility of Bare and Chemically Modified Thalassiosira weissflogii Silica Shells (2016) Bioengineering, 3, p. 35
  • Lutz, K., Gröger, C., Sumper, M., Brunner, E., Biomimetic Silica Formation: Analysis of the Phosphate-induced Self-assembly of Polyamines (2005) Phys. Chem. Chem. Phys., 7, p. 2812
  • Sumper, M., Kröger, N., Silica Formation in Diatoms: The Function of Long-chain Polyamines and Silaffins (2004) J. Mater. Chem., 14, p. 2059
  • Brunner, E., Lutz, K., Sumper, M., Biomimetic Synthesis of Silica Nanospheres Depends on the Aggregation and Phase Separation of Polyamines in Aqueous Solution (2004) Phys. Chem. Chem. Phys., 6, p. 854
  • Huang, Y., Lawrence, P.G., Lapitsky, Y., Self-Assembly of Stiff, Adhesive and Self-Healing Gels from Common Polyelectrolytes (2014) Langmuir, 30, p. 7771
  • Lawrence, P.G., Lapitsky, Y., Ionically Cross-linked Poly(allylamine) as a Stimulus-Responsive Underwater Adhesive: Ionic Strength and pH Effects (2015) Langmuir, 31, p. 1564
  • Zhang, Y., Herling, M., Chenoweth, D.M., General Solution for Stabilizing Triple Helical Collagen (2016) J. Am. Chem. Soc., 138, p. 9751
  • Lakra, R., Kiran, M.S., Usha, R., Mohan, R., Sundaresan, R., Korrapati, P.S., Enhanced Stabilization of Collagen by Furfural (2014) Int. J. Biol. Macromol., 65, p. 252
  • Muzzio, N.E., Gregurec, D., Diamanti, E., Irigoyen, J., Pasquale, M.A., Azzaroni, O., Moya, S.E., Cell Adhesion: Thermal Annealing of Polyelectrolyte Multilayers: An Effective Approach for the Enhancement of Cell Adhesion (2017) Adv. Mater. Interfaces, 4, p. 1600126
  • Hutter, J., Bechhoefer, J., Calibration of Atomic Force Microscope Tips (1993) Rev. Sci. Instrum., 64, p. 1868
  • Lin, D.C., Dimitriadis, E.K., Horkay, F., Robust Strategies for Automated AFM Force Curve Analysis - II: Adhesion-Influenced Indentation of Soft, Elastic Materials (2007) J. Biomech. Eng., 129, p. 430
  • Chizhik, S.A., Huang, Z., Gorbunov, V.V., Myshkin, N.K., Tsukruk, V.V., Micromechanical Properties of Elastic Polymeric Materials as Probed by Scanning Force Microscopy (1998) Langmuir, 14, p. 2606
  • Shulha, H., Kovalev, A., Myshkin, N., Tsukruk, V.V., Some Aspects of AFM Nanomechanical Probing of Surface Polymer Films (2004) Eur. Polym. J., 40, p. 949
  • Corbett, J.C.W., McNeil-Watson, F., Jack, R.O., Howarth, M., Measuring Surface zeta Potential Using Phase Analysis Light Scattering in a Simple Dip Cell Arrangement (2012) Colloids Surf., A, 396, p. 169
  • Diamanti, E., Muzzio, N.E., Gregurec, D., Irigoyen, J., Pasquale, M.A., Azzaroni, O., Brinkmann, M., Moya, S.E., Impact of Thermal Annealing on Wettability and Antifouling Characteristics of Alginate Poly-l-Lysine Polyelectrolyte Multilayer Films (2017) Colloids Surf., B, 145, p. 328
  • Muzzio, N.E., Pasquale, M.A., Diamanti, E., Gregurec, D., Martinez Moro, M., Azzaroni, O., Moya, S.E., Enhanced Antiadhesive Properties of Chitosan/Hyaluronic Acid Polyelectrolyte Multilayers Driven by Thermal Annealing: Low Adherence for Mammalian Cells and Selective Decrease in Adhesion for Gram-positive Bacteria (2017) Mater. Sci. Eng., C, 80, p. 677
  • Muzzio, N.E., Pasquale, M.A., Moya, S.E., Azzaroni, O., Tailored Polyelectrolyte Thin Film Multilayers to Modulate Cell Adhesion (2017) Biointerphases, 12, p. 04E403
  • Di Cio, S., Gautrot, J.E., Cell Sensing of Physical Properties at the Nanoscale: Mechanisms and control of Cell Adhesion and Phenotype (2016) Acta Biomater., 30, p. 26
  • Tsukruk, V.V., Singamaneni, S., (2012) Scanning Probe Microscopy of Soft Matter: Fundamentals and Practices, , Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany
  • Shimomura, S., Matsuno, H., Tanaka, K., Effect of Mechanical Instability of Polymer Scaffolds on Cell Adhesion (2013) Langmuir, 29, p. 11087
  • Kuo, C.-H.R., Xian, J., Brenton, J.D., Franze, K., Sivaniah, E., Complex Stiffness Gradient Substrates for Studying Mechanotactic Cell Migration (2012) Adv. Mater., 24, p. 6059
  • Maloney, J.M., Walton, E.B., Bruce, C.M., Van Vliet, K.J., Influence of Finite Thickness and Stiffness on Cellular Adhesion-induced Deformation of Compliant Substrata (2008) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 78, p. 041923
  • Sen, S., Engler, A.J., Discher, D.E., Matrix Strains Induced by Cells: Computing How Far Cells can Feel (2009) Cell. Mol. Bioeng., 2, p. 39
  • Buxboim, A., Rajagopal, K., Brown, A.E., Discher, D.E., How Deeply Cells Feel: Methods for Thin Gels (2010) J. Phys.: Condens. Matter, 22, p. 194116
  • Chen, W.T., Computation of Stresses and Displacements in a Layered Elastic Medium (1971) Int. J. Eng. Sci., 9, p. 775
  • Kabalnov, A., Ostwald Ripening and Related Phenomena (2001) J. Dispersion Sci. Technol., 22, p. 1
  • Solon, J., Levental, I., Sengupta, K., Georges, P.C., Janmey, P.A., Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates (2007) Biophys. J., 93, p. 4453
  • Tee, S.Y., Fu, J., Chen, C.S., Janmey, P.A., Cell Shape and Substrate Rigidity Both Regulate Cell Stiffness (2011) Biophys. J., 100, p. L25
  • Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., Schaaf, P., Picart, C., Polyelectrolyte Multilayers with a Tunable Young's Modulus: Influence of Film Stiffness on Cell Adhesion (2006) Langmuir, 22, p. 1193
  • Alexander, M.R., Williams, P., Water Contact Angle is not a Good Predictor of Biological Responses to Materials (2017) Biointerphases, 12, p. 026201
  • Arias, C.J., Surmaitis, R.L., Schelenoff, J.B., Cell Adhesion and Proliferation on the Living Surface of a Polyelectrolyte Multilayer (2016) Langmuir, 32, p. 5412
  • Lord, M.S., Foss, M., Basenbacher, F., Influence of Nanoscale Surface Topography on Protein Adsorption and Cellular Response (2010) Nano Today, 5, p. 66
  • Kakinoki, S., Seo, J.H., Inoue, Y., Ishihara, K., Yui, N., Yamaoka, T.A., A Large Mobility of Hydrophilic Molecules at the Outmost Layer Controls the Protein Adsorption and Adhering Behavior with the Actin Fiber Orientation of Human Umbilical Vein Endothelial Cells (HUVEC) (2013) J. Biomater. Sci., Polym. Ed., 24, p. 1320
  • Arima, Y., Iwata, H., Preferential Adsorption of Cell Adhesive Proteins from Complex media on self-assembled monolayers and its effect on Subsequent Cell Adhesion (2015) Acta Biomater., 26, p. 72
  • Nolte, A.J., Treat, N.D., Cohen, R.E., Rubner, M.E., Effect of Relative Humidity on the Young's modulus of Polyelectrolyte Multilayer Films and Related Nonionic Polymers (2008) Macromolecules, 41, p. 5793
  • Shah, M.K., García-Pak, I.H., Darling, E.M., Influence of Inherent Mechanophenotype on Competitive Cellular Adherence (2017) Ann. Biomed. Eng., 45, p. 2036
  • Kerch, G., Polymer Hydration and Stiffness at Biointerfaces and Related Cellular Processes (2018) Nanomedicine, 14, p. 13
  • Grossutti, M., Dutcher, J.R., Correlation between Chain Architecture and Hydration Water Structure in Polysaccharides (2016) Biomacromolecules, 17, p. 1198
  • Grossutti, M., Bergmann, E., Baylis, B., Dutcher, J.R., Equilibrium Swelling, Interstitial Forces, and Water Structuring in Phytoglycogen Nanoparticle Films (2017) Langmuir, 33, p. 2810
  • Ball, P., Water as an Active Constituent in Cell Biology (2008) Chem. Rev., 108, p. 74
  • Antia, M., Baneyx, G., Kubow, K.E., Vogel, V., Fibronectin in Aging Extracellular Matrix Fibrils is Progressively Unfolded by Cells and Elicits an Enhanced Rigidity Response (2008) Faraday Discuss., 139, p. 229
  • Seo, J.H., Sakai, K., Yui, N., Adsorption State of Fibronectin on Poly(dimethylsiloxane) Surfaces with Varied Stiffness can Dominate Adhesion Density of Fibroblasts (2013) Acta Biomater., 9, p. 5493
  • Ouberai, M.M., Xu, K., Welland, M.E., Effect of the Interplay between Protein and Surface on the Properties of Adsorbed Protein Layers (2014) Biomaterials, 35, p. 6157

Citas:

---------- APA ----------
Muzzio, N.E., Pasquale, M.A., Marmisollé, W.A., Von Bilderling, C., Cortez, M.L., Pietrasanta, L.I. & Azzaroni, O. (2018) . Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomaterials Science, 6(8), 2230-2247.
http://dx.doi.org/10.1039/c8bm00265g
---------- CHICAGO ----------
Muzzio, N.E., Pasquale, M.A., Marmisollé, W.A., Von Bilderling, C., Cortez, M.L., Pietrasanta, L.I., et al. "Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion" . Biomaterials Science 6, no. 8 (2018) : 2230-2247.
http://dx.doi.org/10.1039/c8bm00265g
---------- MLA ----------
Muzzio, N.E., Pasquale, M.A., Marmisollé, W.A., Von Bilderling, C., Cortez, M.L., Pietrasanta, L.I., et al. "Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion" . Biomaterials Science, vol. 6, no. 8, 2018, pp. 2230-2247.
http://dx.doi.org/10.1039/c8bm00265g
---------- VANCOUVER ----------
Muzzio, N.E., Pasquale, M.A., Marmisollé, W.A., Von Bilderling, C., Cortez, M.L., Pietrasanta, L.I., et al. Self-assembled phosphate-polyamine networks as biocompatible supramolecular platforms to modulate cell adhesion. Biomater. Sci. 2018;6(8):2230-2247.
http://dx.doi.org/10.1039/c8bm00265g