Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a ‘segmentation clock’, in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors. Previous theoretical studies proposed that this relative movement or cell mixing might alter signaling and thereby enhance synchronization. However, it remains unclear whether the mixing timescale in the tissue is in the right range for this effect, because a framework to reliably measure the mixing timescale and compare it with signaling timescale is lacking. Here, we develop such a framework using a quantitative description of cell mixing without the need for an external reference frame and constructing a physical model of cell movement based on the data. Numerical simulations show that mixing with experimentally observed statistics enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud is fast enough to affect the coherence of rhythmic gene expression. Our approach will find general application in analyzing the relative movements of communicating cells during development and disease. © 2017, Company of Biologists Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis
Autor:Uriu, K.; Bhavna, R.; Oates, A.C.; Morelli, L.G.
Filiación:Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
Theoretical Biology Laboratory, RIKEN, Wako, 351-0198, Japan
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
Max Planck Institute for the Physics of Complex Systems, Dresden, D01187, Germany
Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires, C1425FQD, Argentina
Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, 44227, Germany
Departamento de Física, FCEyN, UBA, Buenos Aires, 1428, Argentina
Palabras clave:Cell mixing; Coupled oscillators; Imaging synchronization; Somitogenesis; Zebrafish
Año:2017
Volumen:6
Número:8
Página de inicio:1235
Página de fin:1244
DOI: http://dx.doi.org/10.1242/bio.025148
Título revista:Biology Open
Título revista abreviado:Biol. Open
ISSN:20466390
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20466390_v6_n8_p1235_Uriu

Referencias:

  • Annila, T., Lihavainen, E., Marques, I.J., Williams, D.R., Yli-Harja, O., Ribeiro, A., ZebIAT, an image analysis tool for registering zebrafish embryos and quantifying cancer metastasis (2013) BMC Bioinformatics, 14, p. S5
  • Ares, S., Morelli, L.G., Jörg, D.J., Oates, A.C., Jülicher, F., Collective modes of coupled phase oscillators with delayed coupling (2012) Phys. Rev. Lett., 108, p. 204101
  • Aulehla, A., Wiegraebe, W., Baubet, V., Wahl, M.B., Deng, C., Taketo, M., Lewandoski, M., Pourquié, O., A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation (2008) Nat. Cell Biol., 10, pp. 186-193
  • Bénazéraf, B., Francois, P., Baker, R.E., Denans, N., Little, C.D., Pourquié, O., A random cell motility gradient downstream of FGF controls elongation of an amniote embryo (2010) Nature, 466, pp. 248-252
  • Bhavna, R., Uriu, K., Valentin, G., Tinevez, J.-Y., Oates, A.C., Object segmentation and ground truth in 3D embryonic imaging (2016) Plos ONE, 11, p. e0161550
  • Cohen, M., Page, K.M., Perez-Carrasco, R., Barnes, C.P., Briscoe, J., A theoretical framework for the regulation of Shh morphogen-controlled gene expression (2014) Development, 141, pp. 3868-3878
  • Csilléry, K., Blum, M.G.B., Gaggiotti, O.E., François, O., Approximate Bayesian Computation (ABC) in practice (2010) Trends Ecol. Evol., 25, pp. 410-418
  • Dahmann, C., Oates, A.C., Brand, M., Boundary formation and maintenance in tissue development (2011) Nat. Rev. Genet., 12, pp. 43-55
  • Delaune, E.A., François, P., Shih, N.P., Amacher, S.L., Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics (2012) Dev. Cell, 23, pp. 995-1005
  • Delfini, M.-C., Dubrulle, J., Malapert, P., Chal, J., Pourquie, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 11343-11348
  • Dray, N., Lawton, A., Nandi, A., Jülich, D., Emonet, T., Holley, S.A., Cell-fibronectin interactions propel vertebrate trunk elongation via tissue mechanics (2013) Curr. Biol., 23, pp. 1335-1341
  • Dubrulle, J., Pourquié, O., Fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo (2004) Nature, 427, pp. 419-422
  • Friedl, P., Gilmour, D., Collective cell migration in morphogenesis, regeneration and cancer (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 445-457
  • Fujiwara, N., Kurths, J., Dıáz-Guilera, A., Synchronization in networks of mobile oscillators (2011) Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 83, p. 025101
  • Gardiner, C., (2009) Stochastic Methods: A Handbook for The Natural and Social Sciences, , 4th edn. Heidelberg: Springer-Verlag
  • Gerlich, D., Ellenberg, J., 4D imaging to assay complex dynamics in live specimens (2003) Nat. Cell Biol. Suppl., pp. S14-S19
  • Herrgen, L., Ares, S., Morelli, L.G., Schröter, C., Jülicher, F., Oates, A.C., Intercellular coupling regulates the period of the segmentation clock (2010) Curr. Biol., 20, pp. 1244-1253
  • Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H., Noise-resistant and synchronized oscillation of the segmentation clock (2006) Nature, 441, pp. 719-723
  • Jiang, Y.-J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., Lewis, J., Notch signalling and the synchronization of the somite segmentation clock (2000) Nature, 408, pp. 475-479
  • Jörg, D.J., Morelli, L.G., Soroldoni, D., Oates, A.C., Jülicher, F., Continuum theory of gene expression waves during vertebrate segmentation (2015) New J. Phys., 17, p. 093042
  • Krol, A.J., Roellig, D., Dequeant, M.-L., Tassy, O., Glynn, E., Hattem, G., Mushegian, A., Pourquie, O., Evolutionary plasticity of segmentation clock networks (2011) Development, 138, pp. 2783-2792
  • Kulesa, P.M., Fraser, S.E., Cell dynamics during somite boundary formation revealed by time-lapse analysis (2002) Science, 298, pp. 991-995
  • Kuramoto, Y., (1984) Chemical Oscillations, Waves, and Turbulence, , Berlin: Springer-Verlag
  • Lawton, A.K., Nandi, A., Stulberg, M.J., Dray, N., Sneddon, M.W., Pontius, W., Emonet, T., Holley, S.A., Regulated tissue fluidity steers zebrafish body elongation (2013) Development, 140, pp. 573-582
  • Levis, D., Pagonabarraga, I., Dıáz-Guilera, A., Synchronization in dynamical networks of locally coupled self-propelled oscillators (2017) Phys. Rev. X, 7, p. 011028
  • Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator (2003) Curr. Biol., 13, pp. 1398-1408
  • Li, G., Liu, T., Nie, J., Guo, L., Malicki, J., Mara, A., Holley, S.A., Wong, S.T.C., Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion (2007) Cytometry. A, 71 A, pp. 835-845
  • Liao, B.-K., Jörg, D.J., Oates, A.C., Faster embryonic segmentation through elevated Delta-Notch signalling (2016) Nat. Commun., 7, p. 11861
  • Liu, Y.-J., Le Berre, M., Lautenschlaeger, F., Maiuri, P., Callan-Jones, A., Heuzé, M., Takaki, T., Piel, M., Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells (2015) Cell, 160, pp. 659-672
  • Manning, A.J., Kimelman, D., Tbx16 and Msgn1 are required to establish directional cell migration of zebrafish mesodermal progenitors (2015) Dev. Biol., 406, pp. 172-185
  • Mara, A., Schroeder, J., Chalouni, C., Holley, S.A., Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC (2007) Nat. Cell Biol., 9, pp. 523-530
  • Marjoram, P., Molitor, J., Plagnol, V., Tavare, S., Markov chain Monte Carlo without likelihoods (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 15324-15328
  • Matsuda, M., Koga, M., Woltjen, K., Nishida, E., Ebisuya, M., Synthetic lateral inhibition governs cell-type bifurcation with robust ratios (2015) Nat. Commun., 6, p. 6195
  • Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C., Delayed coupling theory of vertebrate segmentation (2009) HFSP J., 3, pp. 55-66
  • Murray, P.J., Maini, P.K., Baker, R.E., The clock and wavefront model revisited (2011) J. Theor. Biol., 283, pp. 227-238
  • Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, pp. 625-639
  • Okubo, Y., Sugawara, T., Abe-Koduka, N., Kanno, J., Kimura, A., Saga, Y., Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling (2012) Nat. Commun., 3, p. 1141
  • Özbudak, E.M., Lewis, J., Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries (2008) Plos Genet., 4, p. e15
  • Peruani, F., Nicola, E.M., Morelli, L.G., Mobility induces global synchronization of oscillators in periodic extended systems (2010) New J. Phys., 12, p. 093029
  • Pourquié, O., Vertebrate segmentation: From cyclic gene networks to scoliosis (2011) Cell, 145, pp. 650-663
  • Qu, L., Long, F., Peng, H., 3-D registration of biological images and models: Registration of microscopic images and its uses in segmentation and annotation (2015) IEEE Signal Process. Mag., 32, pp. 70-77
  • Riedel-Kruse, I.H., Muller, C., Oates, A.C., Synchrony dynamics during initiation, failure, and rescue of the segmentation clock (2007) Science, 317, pp. 1911-1915
  • Rørth, P., Collective cell migration (2009) Annu. Rev. Cell. Dev. Biol., 25, pp. 407-429
  • Sbalzarini, I.F., Koumoutsakos, P., Feature point tracking and trajectory analysis for video imaging in cell biology (2005) J. Struct. Biol., 151, pp. 182-195
  • Schröter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., Oates, A.C., Dynamics of zebrafish somitogenesis (2008) Dev. Dyn., 237, pp. 545-553
  • Schröter, C., Ares, S., Morelli, L.G., Isakova, A., Hens, K., Soroldoni, D., Gajewski, M., Deplancke, B., Topology and dynamics of the zebrafish segmentation clock core circuit (2012) Plos Biol., 10, p. e1001364
  • Shimojo, H., Kageyama, R., Oscillatory control of Delta-like1 in somitogenesis and neurogenesis: A unified model for different oscillatory dynamics (2016) Semin. Cell Dev. Biol., 49, pp. 76-82
  • Shimojo, H., Isomura, A., Ohtsuka, T., Kori, H., Miyachi, H., Kageyama, R., Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis (2016) Genes Dev., 30, pp. 102-116
  • Soroldoni, D., Jorg, D.J., Morelli, L.G., Richmond, D.L., Schindelin, J., Julicher, F., Oates, A.C., Genetic oscillations. A Doppler effect in embryonic pattern formation (2014) Science, 345, pp. 222-225
  • Steventon, B., Duarte, F., Lagadec, R., Mazan, S., Nicolas, J.-F., Hirsinger, E., Species-specific contribution of volumetric growth and tissue convergence to posterior body elongation in vertebrates (2016) Development, 143, pp. 1732-1741
  • Sunnåker, M., Busetto, A.G., Numminen, E., Corander, J., Foll, M., Dessimoz, C., Approximate Bayesian computation (2013) Plos Comput. Biol., 9, p. e1002803
  • Tada, M., Heisenberg, C.-P., Convergent extension: Using collective cell migration and cell intercalation to shape embryos (2012) Development, 139, pp. 3897-3904
  • Tiedemann, H.B., Schneltzer, E., Zeiser, S., Rubio-Aliaga, I., Wurst, W., Beckers, J., Przemeck, G.K.H., Hrabé De Angelis, M., Cell-based simulation of dynamic expression patterns in the presomitic mesoderm (2007) J. Theor. Biol., 248, pp. 120-129
  • Tiedemann, H.B., Schneltzer, E., Zeiser, S., Hoesel, B., Beckers, J., Przemeck, G.K.H., De Angelis, M.H., From dynamic expression patterns to boundary formation in the presomitic mesoderm (2012) Plos Comput. Biol., 8, p. e1002586
  • Tiedemann, H.B., Schneltzer, E., Zeiser, S., Wurst, W., Beckers, J., Przemeck, G.K.H., Hrabě De Angelis, M., Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition (2014) Plos Comput. Biol., 10, p. e1003843
  • Tsiairis, C.D., Aulehla, A., Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns (2016) Cell, 164, pp. 656-667
  • Uriu, K., Genetic oscillators in development (2016) Dev. Growth Differ., 58, pp. 16-30
  • Uriu, K., Morelli, L.G., Collective cell movement promotes synchronization of coupled genetic oscillators (2014) Biophys. J., 107, pp. 514-526
  • Uriu, K., Morelli, L.G., Determining the impact of cell mixing on signaling during development (2017) Dev. Growth Differ
  • Uriu, K., Morishita, Y., Iwasa, Y., Random cell movement promotes synchronization of the segmentation clock (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 4979-4984
  • Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions (2012) Phys. Biol., 9, p. 036006
  • Uriu, K., Ares, S., Oates, A.C., Morelli, L.G., Dynamics of mobile coupled phase oscillators (2013) Phys. Rev. E, 87, p. 032911
  • Uriu, K., Morelli, L.G., Oates, A.C., Interplay between intercellular signaling and cell movement in development (2014) Semin. Cell Dev. Biol., 35, pp. 66-72
  • Wang, P., Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., Understanding the spreading patterns of mobile phone viruses (2009) Science, 324, pp. 1071-1076
  • Webb, A.B., Lengyel, I.M., Jorg, D.J., Valentin, G., Julicher, F., Morelli, L.G., Oates, A.C., Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock (2016) Elife, 5, p. e08438
  • Xiong, F., Tentner, A.R., Huang, P., Gelas, A., Mosaliganti, K.R., Souhait, L., Rannou, N., Cowgill, P.D., Specified neural progenitors sort to form sharp domains after noisy Shh signaling (2013) Cell, 153, pp. 550-561

Citas:

---------- APA ----------
Uriu, K., Bhavna, R., Oates, A.C. & Morelli, L.G. (2017) . A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis. Biology Open, 6(8), 1235-1244.
http://dx.doi.org/10.1242/bio.025148
---------- CHICAGO ----------
Uriu, K., Bhavna, R., Oates, A.C., Morelli, L.G. "A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis" . Biology Open 6, no. 8 (2017) : 1235-1244.
http://dx.doi.org/10.1242/bio.025148
---------- MLA ----------
Uriu, K., Bhavna, R., Oates, A.C., Morelli, L.G. "A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis" . Biology Open, vol. 6, no. 8, 2017, pp. 1235-1244.
http://dx.doi.org/10.1242/bio.025148
---------- VANCOUVER ----------
Uriu, K., Bhavna, R., Oates, A.C., Morelli, L.G. A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis. Biol. Open. 2017;6(8):1235-1244.
http://dx.doi.org/10.1242/bio.025148