Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. © 2013 The Authors.

Registro:

Documento: Artículo
Título:Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance
Autor:Fernández, L.; de Haro, L.A.; Distefano, A.J.; Martínez, M.C.; Lía, V.; Papa, J.C.; Olea, I.; Tosto, D.; Hopp, H.E.
Filiación:Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), Hurlingham, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Argentina
Estación Experimental Agropecuaria Oliveros, Instituto Nacional de Tecnología Agropecuaria, Oliveros, Santa Fe, Argentina
Sección Malezas, Estación Experimental Agroindustrial Obispo Colombres, Las Talitas, Tucumán, Argentina
Palabras clave:EPSPS; Glyphosate; Herbicide resistance; Microsatellites; Sorghum halepense; Weed epidemiology
Año:2013
Volumen:3
Número:10
Página de inicio:3388
Página de fin:3400
DOI: http://dx.doi.org/10.1002/ece3.671
Título revista:Ecology and Evolution
Título revista abreviado:Ecology and Evolution
ISSN:20457758
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20457758_v3_n10_p3388_Fernandez

Referencias:

  • Andreakis, N., Kooistra, W.H.C.F., Procaccini, G., High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes (2009) Mol. Ecol., 18, pp. 212-226
  • Arroyo, J.M., Rigueiro, C., Rodríguez, R., Hampe, A., Valido, A., Rodríguez-Sánchez, F., Isolation and characterization of 20 microsatellite loci for laurel species (Laurus, Lauraceae) (2010) Am. J. Bot., 97, pp. e26-e30
  • Baerson, S.R., Rodríguez, D.J., Tran, M., Feng, Y., Biest, N.A., Dill, G.M., Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (2002) Plant Physiol., 129, pp. 1265-1275
  • Bhattramakki, D., Dong, J., Chhabra, A.K., Hart, G.E., An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench (2000) Genome, 43, pp. 988-1002
  • Bonierbale, M.W., Plaisted, R.I., Tanksley, S.D., A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes (1993) Theor. Appl. Genet., 86, pp. 481-491
  • Burdon, J.J., Marshall, D.R., Biological control and the reproductive mode of weeds (1981) J. Appl. Ecol., 18, pp. 649-658
  • Chang, J.H., Han, Y.L., Zhao, Q., Analysis of genetic relationship between sorghum (Sorghum bicolor L. Mench) and johnsongrass (Sorghum. halepense L. Pers) (2007) Fen Zi Xi Bao Sheng Wu Xue Bao, 40, pp. 309-314
  • Costa, J., Appleby, A.P., Response of two yellow nutsedge varieties to three herbicides (1976) Weed Sci., 24, pp. 54-58
  • De Wet, J.M., Systematics and evolution of Sorghum sect. Sorghum (Gramineae) (1978) Am. J. Bot., 65, pp. 471-484
  • Dinelli, G., Marotti, I., Bonetti, A., Minellia, M., Catizonea, P., Barnes, J., Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes (2006) Pestic. Biochem. Physiol., 86, pp. 30-41
  • Duke, S.O., Powles, S.B., Glyphosate: a once-in-a-century herbicide (2008) Pest Manag. Sci., 64, pp. 319-325
  • Funke, T., Yang, Y., Han, H., Healy-Fried, M., Olesen, S., Becker, A., Structural basis of glyphosate resistance resulting from the double mutation Thr97. Ile and Pro101? Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli (2009) J. Biol. Chem., 284, pp. 9854-9898
  • Gaines, T.A., Zhang, W., Wang, D., Bukun, B., Chisholm, S.T., Shaner, D.L., Gene amplification confers glyphosate resistance in Amaranthus palmeri (2010) Proc. Natl Acad. Sci., 107, pp. 1029-1034
  • Glaze, N.C., Cultural and mechanical manipulation of Cyperus spp (1987) Weed Tech., 1, pp. 82-83
  • Guo, Q.X., Yun, Y., Xian, H., Rong, Z., Ling, L., SSR analysis of genetic diversity among quarantine weed Sorghum halepense and releated species (2008) Wuyi Sci. J., 24, pp. 54-59
  • González-Torralva, F., Gil-Humanes, J., Barro, F., Brants, I., De Prado, R., Target site mutation and reduced translocation are present in a glyphosate-resistant Lolium multiflorum Lam. biotype from Spain (2012) Plant Physiol. Biochem., 58, pp. 16-22
  • Holm, L., Plucknett, D.L., Pancho, J.V., Herberger, J.P., Sorghum halepense (L.) Pers (1977) The World's Worst Weeds: Distribution and biology, pp. 54-61. , The Univ. Press of Hawaii, Honolulu
  • Hopp, H.E., Fernández, L., Distéfano, A.J., Martínez, M.C., Tosto, D., (2010) Molecular epidemiology of glyphosate resistant Johnsongrass (Sorghum halepense) in Argentina, , http://www.bayercropscience.us/rewards-and-programs/Documents/BCS_MTG_Booklet_WeedResist.pdf, Pan-American Weed Resistance Conference, Miami Beach, Florida, USA. (accessed October 25, 2012)
  • Jessup, R.W., Whitmire, D.K., Farrow, Z.L., Burson, B.L., Molecular characterization of non-flowering perennial Sorghum spp. Hybrids (2012) Am. J. Exp. Agric., 2, pp. 9-20
  • Jombart, T., Adegenet: a R package for the multivariate analysis of genetic markers (2008) Bioinformatics, 24, pp. 1403-1405
  • Jombart, T.S., Devillard, S., Balloux, F., Discriminant analysis of principal components: a new method for the analysis of genetically structured populations (2010) BMC Genet., 11, p. 94
  • Kaundun, S.S., Dale, R.P., Zelaya, I.A., Dinelli, G., Marotti, I., McIndoe, E., A novel P106L mutation in EPSPS and an unknown mechanism(s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population (2011) J. Agric. Food Chem., 59, pp. 3227-3233
  • Kong, L., Dong, J., Hart, G.E., Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs) (2000) Theor. Appl. Genet., 101, pp. 438-448
  • Legendre, P., Legendre, L., (1998) Numerical ecology, , English 2nd edn. Elsevier, Amsterdam
  • Li, M., Yuyama, N., Luo, L., Hirata, M., Cai, H., In silico mapping of 1758 new SSR markers developed from public genomic sequences for Sorghum (2009) Mol. Breed., 24, pp. 41-47
  • Lijavetzky, D., Martínez, M.C., Carrari, F., Hopp, H.E., QTL mapping and analysis of pre-harvest sprouting resistance in sorghum (2000) Euphytica, 112, pp. 125-135
  • Mace, E.S., Jordan, D.R., Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench) (2010) Theor. Appl. Genet., 121, pp. 1339-1356
  • Mace, E.S., Rami, J.F., Bouchet, S., Klein, P.E., Klein, R.R., Kilian, A., A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers (2009) BMC Plant Biol., 9, p. 13. , doi: 10.1186/ 1471-2229-9-13
  • Mantel, N., The detection of disease clustering and a generalized regression approach (1967) Cancer Res., 27, pp. 209-220
  • Morrell, P.L., Williams-Coplin, T.D., Lattu J.E.Bowers, A.L., Chandler, J.M., Paterson, A.H., Crop-to-weed introgression has impacted allelic composition of johnsongrass populations with and without recent exposure to cultivated sorghum (2005) Mol. Ecol., 14, pp. 2143-2154
  • Nei, M., Analysis of gene diversity in subdivided populations (1973) Proc. Natl Acad. Sci. USA, 70, pp. 3321-3323
  • Okoli, C.A.N., Shilling, D.G., Smith, R.I., Bewick, T.A., Genetic diversity in purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.) (1997) Biol. Contr., 8, pp. 111-118
  • Owen, M.D.K., Weed species shifts in glyphosate-resistant crops (2008) Pest Manag. Sci., 64, pp. 377-387
  • Padgette, S.R., Re, D.B., Gasser, C.S., Eichholtz, D.A., Frazier, R.B., Hironaka, C.M., Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active-site (1991) J. Biol. Chem., 266, pp. 22361-22369
  • Paterson, A., Schertz, K., Lin, Y., Liu, S., Chang, Y., The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers (1995) Proc. Natl Acad. Sci. USA, 92, pp. 6127-6131
  • Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., The Sorghum bicolor genome and the diversification of grasses (2009) Nature, 457, pp. 551-556
  • Pérez-Jones, A., Park, K.W., Polge, N., Colquhoun, J., Mallory-Smith, C.A., Investigating the mechanisms of glyphosate resistance in Lolium multiflorum (2007) Planta, 226, pp. 395-404
  • Pline-Srnic, W., Physiological mechanisms of glyphosate resistance source (2006) Weed Technol., 20, pp. 290-300
  • Powles, S.B., Evolved glyphosate-resistant weeds around the world: lessons to be learnt (2008) Pest Manag. Sci., 64, pp. 360-365
  • Powles, S.B., Yu, Q., Evolution in action: plants resistant to herbicides (2010) Annu. Rev. Plant Biol., 61, pp. 317-347
  • Preston, C., Wakelin, A.M., Dolman, F.C., Bostamam, Y., Boutsalis, P., Decade of glyphosate-resistant lolium around the World: mechanisms, genes, fitness, and agronomic management (2009) Weed Sci., 57, pp. 435-441
  • R: A language and environment for statistical computing (2009) R Foundation for Statistical Computing, , R Development Core Team, Vienna, Austria
  • Ramu, P., Deshpande, S., Senthilvel, S., Jayashree, B., Billot, C., Deu, M., In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding (2010) Mol. Breed., 26, pp. 409-418
  • Riar, D.S., Norsworthy, J.K., Johnson, D.B., Scott, R.C., Bagavathiannan, M., Glyphosate resistance in a Johnsongrass (Sorghum halepense) biotype from Arkansas (2011) Weed Sci., 59, pp. 299-304
  • Rodzen, J., Famula, T., May, B., Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci (2004) Aquaculture, 232, pp. 165-182
  • Rohlf, F.J., (2000) NTSYS-pc, Numerical taxonomy and multivariate analysis system, version 2.10e, , Applied Biostatistics, Inc., New York
  • Salas, R.A., Dayan, F.A., Pan, Z., Watson, S.B., Dickson, J.W., Scott, R.C., EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas (2012) Pest Manag. Sci., 68, pp. 1223-1230
  • Srinivas, G., Satish, K., Madhusudhana, R., Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in Sorghum (2009) Theor. Appl. Genet., 118, pp. 1439-1454
  • Sterling, T.M., Thompson, D.C., Abbott, L.B., Implications of invasive plant variation for weed management (2004) Weed Tech., 18, pp. 1319-1324
  • Tarr, S.A.J., (1962) Diseases of sorghum, sudangrass and broom corn, p. 380. , Oxford University Press, Oxford, U.K
  • Vaiman, D., Merciera, D., Moazai, G., A set of 99 cattle microsatellite, characterization, synteny mapping and polymorphism (1994) Mamm. Genome, 5, pp. 288-297
  • Valverde, B.E., Gressel, J., (2006) Dealing with the evolution and spread of Sorghum halepense glyphosate resistance in Argentina, , http://www.sinavimo.gov.ar/files/senasareport2006.pdf, A consultancy report to SENASA. (accessed December 12, 2012)
  • Vigna, B.Z., Alleoni, G.C., Jungmann, L., do Valle, C., de Souza, A.P., New microsatellite markers developed from Urochloa humidicola (Poaceae) and cross amplification in different Urochloa species (2011) BMC Res. Notes, 4, p. 523. , (1-10)
  • Vila-Aiub, M.M., Balbi, M.C., Gundel, P.E., Ghersa, C.M., Powles, S.B., Evolution of glyphosate-resistant Johnsongrass (Sorghum halepense) in glyphosate-resistant soybean (2007) Weed Sci., 55, pp. 566-571
  • Vila-Aiub, M.M., Vidal, R.A., Balbi, M.C., Gundel, P.E., Trucco, F., Ghersa, C.M., Glyphosate-resistant weeds of South American cropping systems: an overview (2008) Pest Manag. Sci., 64, pp. 366-371
  • Vila-Aiub, M., Balbi, M.C., Distéfano, A.J., Fernández, L., Hopp, E., Yu, Q., Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake (2012) Pest Manag. Sci., 68, pp. 430-436
  • Warwick, S.I., Black, L.D., The biology of Canadian weeds. 61. Sorghum halepense (L.) Pers (1983) Can. J. Plant Sci., 63, pp. 997-1014
  • Wu, Y.Q., Huang, Y., An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map (2006) Genome, 50, pp. 84-89
  • Zhang, D., Carbajulca, P.D., Ojeda, L., Rossel, G., Milla, S., Herrera, C., (2000) Microsatellite analysis of genetic diversity in Sweetpotato varieties from Latin America, , http://www.cipotato.org/publications/program_reports/99_00/37microsatla.pdf, CIP Program Report 1999-2000. (accessed December 12, 2012)

Citas:

---------- APA ----------
Fernández, L., de Haro, L.A., Distefano, A.J., Martínez, M.C., Lía, V., Papa, J.C., Olea, I.,..., Hopp, H.E. (2013) . Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance. Ecology and Evolution, 3(10), 3388-3400.
http://dx.doi.org/10.1002/ece3.671
---------- CHICAGO ----------
Fernández, L., de Haro, L.A., Distefano, A.J., Martínez, M.C., Lía, V., Papa, J.C., et al. "Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance" . Ecology and Evolution 3, no. 10 (2013) : 3388-3400.
http://dx.doi.org/10.1002/ece3.671
---------- MLA ----------
Fernández, L., de Haro, L.A., Distefano, A.J., Martínez, M.C., Lía, V., Papa, J.C., et al. "Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance" . Ecology and Evolution, vol. 3, no. 10, 2013, pp. 3388-3400.
http://dx.doi.org/10.1002/ece3.671
---------- VANCOUVER ----------
Fernández, L., de Haro, L.A., Distefano, A.J., Martínez, M.C., Lía, V., Papa, J.C., et al. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance. Ecology and Evolution. 2013;3(10):3388-3400.
http://dx.doi.org/10.1002/ece3.671