Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In daily life, in the operating room and in the laboratory, the operational way to assess wakefulness and consciousness is through responsiveness. A number of studies suggest that the awake, conscious state is not the default behavior of an assembly of neurons, but rather a very special state of activity that has to be actively maintained and curated to support its functional properties. Thus responsiveness is a feature that requires active maintenance, such as a homeostatic mechanism to balance excitation and inhibition. In this work we developed a method for monitoring such maintenance processes, focusing on a specific signature of their behavior derived from the theory of dynamical systems: stability analysis of dynamical modes. When such mechanisms are at work, their modes of activity are at marginal stability, neither damped (stable) nor exponentially growing (unstable) but rather hovering in between. We have previously shown that, conversely, under induction of anesthesia those modes become more stable and thus less responsive, then reversed upon emergence to wakefulness. We take advantage of this effect to build a single-trial classifier which detects whether a subject is awake or unconscious achieving high performance. We show that our approach can be developed into a means for intra-operative monitoring of the depth of anesthesia, an application of fundamental importance to modern clinical practice. © 2019, The Author(s).

Registro:

Documento: Artículo
Título:Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity
Autor:Alonso, L.M.; Solovey, G.; Yanagawa, T.; Proekt, A.; Cecchi, G.A.; Magnasco, M.O.
Filiación:Laboratory of integrative neuroscience, The Rockefeller University, New York, NY 10065, United States
Volen Center for Complex Systems, Department of Biology, Brandeis University, Waltham, MA 02454, United States
Instituto del Cálculo, FCEyN, Universidad de Buenos Aires, (C1428EGA), Buenos Aires, Argentina
Laboratory for Adaptive Intelligence, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan
Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, United States
IBM, Thomas J. Watson Research Center, Yorktown Heights, NY, United States
Palabras clave:anesthesia induction; anesthesia level; article; awareness; classifier; clinical practice; controlled study; ego development; human; human experiment; patient monitoring; theoretical study; wakefulness
Año:2019
Volumen:9
Número:1
DOI: http://dx.doi.org/10.1038/s41598-019-41345-4
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v9_n1_p_Alonso

Referencias:

  • Gibbs, F.A., Gibbs, E.L., Lennox, W.G., Effect on the electro-encephalogram of certain drugs which influence nervous activity (1937) Arch. Intern. Med., 60, pp. 154-166
  • John, E.R., Invariant reversible QEEG effects of anesthetics (2001) Conscious. Cogn., 10, pp. 165-183
  • Tinker, J.H., Sharbrough, F.W., & Michenfelder, John D. Anterior shift of the dominant EEG rhytham during anesthesia in the Java monkey: correlation with anesthetic potency (1977) Anesthesiology., 46, pp. 252-259
  • Cimenser, A., Tracking brain states under general anesthesia by using global coherence analysis (2011) Proc. Natl. Acad. Sci. USA, , 201017041
  • Maksimow, A., Increase in high frequency EEG activity explains the poor performance of EEG spectral entropy monitor during S-ketamine anesthesia/ (2006) Clin. Neurophysiol., 117, pp. 1660-1668
  • Blain-Moraes, S., Lee, U., Ku, S., Noh, G., Mashour, G.A., Electroencephalographic effects of ketamine on power, cross-frequency coupling, and connectivity in the alpha bandwidth (2014) Front. Syst. Neurosci., 8, p. 114
  • Hudson, A.E., Calderon, D.P., Pfaff, D.W., Proekt, A., Recovery of consciousness is mediated by a network of discrete metastable activity states (2014) Proc. Natl. Acad. Sci. USA, , 201408296
  • Johansen, J.W., Update on bispectral index monitoring (2006) Best. Pract. Res. Clin. Anaesthesiol., 20, pp. 81-99
  • Hans, P., Dewandre, P.Y., Brichant, J.F., Bonhomme, V., Comparative effects of ketamine on bispectral index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia (2004) Br. J. Anaesth., 94, pp. 336-340
  • Lee, U., Disruption of frontal–parietal communication by ketamine, propofol, and sevoflurane (2013) Anesthesiology., 118, pp. 1264-1275
  • Massimini, M., Breakdown of cortical effective connectivity during sleep (2005) Science., 309, pp. 2228-2232
  • Sanchez-Vives, M.V., Massimini, M., Mattia, M., Shaping the default activity pattern of the cortical network (2017) Neuron., 94, pp. 993-1001
  • Ferrarelli, F., Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness (2010) Proc. Natl. Acad. Sci, , USA 200913008
  • Casali, A.G., A theoretically based index of consciousness independent of sensory processing and behavior (2003) Sci. Transl. Med., 5, pp. 71-80
  • Langton, C.G., Computation at the edge of chaos: phase transitions and emergent computation (1990) Physica D., 42, pp. 12-37
  • Gireesh, E.D., Plenz, D., Neuronal avalanches organize as nested theta-and beta/gamma-oscillations during development of cortical layer 2/3 (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 7576-7581
  • Ribeiro, T.L., Spike avalanches exhibit universal dynamics across the sleep-wake cycle (2010) PLoS One., 5
  • Biyu, J.H., Zempel, J.M., Snyder, A.Z., Raichle, M.E., The temporal structures and functional significance of scale-free brain activity (2010) Neuron., 66, pp. 353-369
  • Shriki, O., Neuronal avalanches in the resting MEG of the human brain (2013) J. Neurosci., 33, pp. 7079-7090
  • Magnasco, M.O., Piro, O., Cecchi, G.A., Self-tuned critical anti-Hebbian networks (2009) Phys. Rev. Lett., 102, p. 258102
  • Mora, T., Bialek, W., Are biological systems poised at criticality? (2011) J. Stat. Phys., 144, pp. 268-302
  • Beggs, J.M., Timme, N., Being critical of criticality in the brain (2012) Front. Physiol., 3, p. 163
  • Shew, W.L., Plenz, D., The functional benefits of criticality in the cortex (2013) Neuroscientist., 19, pp. 88-100
  • Solovey, G., Loss of consciousness is associated with stabilization of cortical activity (2015) J. Neurosci., 35, pp. 10866-10877
  • Alonso, L.M., Dynamical criticality during induction of anesthesia in human ECoG recordings (2014) Front. Neural Circuits., 8
  • Solovey, G., Miller, K.J., Ojemann, J., Magnasco, M.O., Cecchi, G.A., Self-regulated dynamical criticality in human ECoG (2012) Front. Integr. Neurosci., 6, p. 44
  • Lütkepohl, H., (2005) New Introduction To Multiple Time Series Analysis, , Springer Science & Business Media
  • Seabold, S., Perktold, J., Statsmodels: Econometric and statistical modeling with python (2010) Proceedings of the 9Th Python in Science Conference
  • Jones, E., Scipy: Open Source Scientific Tools for Python, , http://www.scipy.org/
  • Anderson, E., LAPACK Users’ Guide (1999) SIAM J. Appl. Math.
  • Pedregosa, F., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res., 12
  • Maciver, B., Bland, B.H., Chaos analysis of EEG during isoflurane-induced loss of righting in rats (2014) Front. Syst. Neurosci., 8. , &
  • Boveroux, P., Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness (2010) Anesthesiology., 113, pp. 1038-1053
  • Boly, M., Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness (2012) J. Neurosci., 32, pp. 7082-7090
  • Bonhomme, V., Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers (2016) Anesthesiology., 125, pp. 873-888
  • Schnakers, C., Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment (2009) BMC Neurol., 9
  • Avidan, M.S., Prevention of intraoperative awareness in a high-risk surgical population (2011) N. Engl. J. Med., 365, pp. 591-600
  • Russell, I.F., The Narcotrend depth of anaesthesiamonitor cannot reliably detect consciousness during general anaesthesia: an investigation using the isolated forearm technique (2006) Br. J. Anaesth., 96, pp. 346-352
  • Sanders, R.D., Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique (2017) Anesthesiology., 126, pp. 214-222
  • Gaskell, A.L., Frontal alpha-delta EEG does not preclude volitional response during anaesthesia: prospective cohort study of the isolated forearm technique (2017) Br. J. Anaesth., 119, pp. 664-673
  • Zand, F., Hadavi, S.M.R., Chohedri, A., Sabetian, P., Survey on the adequacy of depth of anaesthesia with bispectral index and isolated forearm technique in elective Caesarean section under general anaesthesia with sevoflurane (2014) Br. J. Anaesth., 112, pp. 871-878
  • Schneider, G., Bispectral Index (BIS) may not predict awareness reaction to intubation in surgical patients (2002) J. Neurosurg. Anesthesiol., 14, pp. 7-11
  • Ghoneim, M.M., Weiskopf, R.B., Awareness during anesthesia (2000) Anesthesiology., 92, p. 597
  • Brown, E.N., Lydic, R., Schiff, N.D., General anesthesia, sleep, and coma (2010) N. Engl. J. Med., 363, pp. 2638-2650
  • Bak, P., Tang, C., Wiesenfeld, K., Self-organized criticality: An explanation of 1/f noise (1987) Phys. Rev. Lett., 59, pp. 381-384
  • Gil, L., Sornette, D., Landau-Ginzburg theory of self-organized criticality (1996) Phys. Rev. Lett., 76, p. 3991
  • Rabinovich, M., Dynamical encoding by networks of competing neuron groups: winnerless competition (2001) Phys. Rev. Lett., 87, p. 068102
  • Koch, C., Massimini, M., Boly, M., Tononi, G., Neural correlates of consciousness: progress and problems (2016) Nature Rev. Neurosci., 17, pp. 307-321
  • Tagliazucchi, E., Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics (2016) J. Royal Soc. Interface., 13, p. 20151027
  • Bola, M., Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans (2017) NeuroImage., 167, pp. 130-142
  • Ashwin, P., Karabacak, Ã., Nowotny, T., Criteria for robustness of heteroclinic cycles in neural microcircuits (2011) J. Math. Neurosci., 1, pp. 1-18
  • Aguiar, M., Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation (2011) J. Nonlinear Sci., 21, pp. 271-323
  • Cimenser, A., Tracking brain states under general anesthesia by using global coherence analysis (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 8832-8837
  • Imas, O.A., Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat (2005) Neurosci. Lett., 387, pp. 145-150
  • Lee, U., Genuine and spurious phase synchronization strengths during consciousness and general anesthesia (2012) PloS One., 7
  • Schnider, T.W., The influence of age on propofol pharmacodynamics (1999) Anesthesiology., 90, pp. 1502-1516
  • Schneider, T., Neumaier, A., Algorithm 808: ARfitA Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models (2001) ACM Trans. Math. Softw., 27, pp. 58-65
  • Strogatz, S., (2001) Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, , CRC Press
  • Tagliazucchi, E., Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep (2013) Proc. Natl. Acad. Sci. USA
  • Meisel, C., Olbrich, E., Shriki, O., Achermann, P., Fading Signatures of Critical Brain Dynamics during Sustained Wakefulness in Humans (2013) J. Neurosci., 33, pp. 17363-17372
  • Ribeiro, S., Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus (2007) Front. Neurosci., 1, p. 43

Citas:

---------- APA ----------
Alonso, L.M., Solovey, G., Yanagawa, T., Proekt, A., Cecchi, G.A. & Magnasco, M.O. (2019) . Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity. Scientific Reports, 9(1).
http://dx.doi.org/10.1038/s41598-019-41345-4
---------- CHICAGO ----------
Alonso, L.M., Solovey, G., Yanagawa, T., Proekt, A., Cecchi, G.A., Magnasco, M.O. "Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity" . Scientific Reports 9, no. 1 (2019).
http://dx.doi.org/10.1038/s41598-019-41345-4
---------- MLA ----------
Alonso, L.M., Solovey, G., Yanagawa, T., Proekt, A., Cecchi, G.A., Magnasco, M.O. "Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity" . Scientific Reports, vol. 9, no. 1, 2019.
http://dx.doi.org/10.1038/s41598-019-41345-4
---------- VANCOUVER ----------
Alonso, L.M., Solovey, G., Yanagawa, T., Proekt, A., Cecchi, G.A., Magnasco, M.O. Single-trial classification of awareness state during anesthesia by measuring critical dynamics of global brain activity. Sci. Rep. 2019;9(1).
http://dx.doi.org/10.1038/s41598-019-41345-4