Artículo

Vecchione, M.B.; Eiras, J.; Suarez, G.V.; Angerami, M.T.; Marquez, C.; Sued, O.; Ben, G.; Pérez, H.M.; Gonzalez, D.; Maidana, P.; Mesch, V.; Quiroga, M.F.; Bruttomesso, A.C. "Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An estimated one third of the world's population is affected by latent tuberculosis (TB), which once active represents a leading cause of death among infectious diseases. Human immunodeficiency virus (HIV) infection is a main predisposing factor to TB reactivation. Individuals HIV-TB co-infected develop a chronic state of inflammation associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This results in a hormonal imbalance, disturbing the physiological levels of cortisol and dehydroepiandrosterone (DHEA). DHEA and its oxygenated metabolites androstenediol (AED), androstenetriol (AET) and 7-oxo-DHEA are immunomodulatory compounds that may regulate physiopathology in HIV-TB co-infection. In order to study possible changes in plasma levels of these hormones, we developed an approach based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To our knowledge, this represents the first report of their simultaneous measurement in HIV-TB individuals and the comparison with healthy donors, obtaining statistically higher plasma levels of DHEA, AET and 7-oxo-DHEA in patients. Moreover, we found that concentrations of 7-oxo-DHEA positively correlated with absolute CD4+ T cell counts, nadir CD4+ T cell values and with individuals who presented TB restricted to the lungs. This research contributes to understanding the role of these hormones in HIV-TB and emphasizes the importance of deepening their study in this context. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection
Autor:Vecchione, M.B.; Eiras, J.; Suarez, G.V.; Angerami, M.T.; Marquez, C.; Sued, O.; Ben, G.; Pérez, H.M.; Gonzalez, D.; Maidana, P.; Mesch, V.; Quiroga, M.F.; Bruttomesso, A.C.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Unidad de Microanalisis y Metodos Fisicos Aplicados a la Quimica Orgánica (UMYMFOR), Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Centro de Alta Tecnología Analítica (CATA), Analytical Technologies S.A., Buenos Aires, Argentina
Fundación Huésped, Buenos Aires, Argentina
Hospital Juan A. Fernández, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, INFIBIOC, Buenos Aires, Argentina
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-24771-8
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Vecchione

Referencias:

  • (2016) Global Tuberculosis Report, , http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1
  • Getahun, H., Gunneberg, C., Granich, R., Nunn, P., HIV infection-associated tuberculosis: The epidemiology and the response (2010) Clin. Infect. Dis., 50, pp. S201-S207
  • Wu, B., Epidemiology of tuberculosis in chongqing, China: A secular trend from 1992 to 2015 (2017) Sci. Rep., 7, p. 7832
  • Suarez, G.V., Immunoendocrine interactions during HIV-TB coinfection: Implications for the design of new adjuvant therapies (2015) Biomed Res. Int., 2015
  • Nusbaum, R.J., (2016) Pulmonary Tuberculosis in Humanized Mice Infected with HIV-1. 6, p. 21522
  • Chrousos, G.P., The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation (2007) N. Engl. J. Med., p. 332
  • Correa, S.G., Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity? (2007) Cytokine Growth Factor Rev., 18, pp. 125-134
  • George, M.M., Bhangoo, A., Human immune deficiency virus (HIV) infection and the hypothalamic pituitary adrenal axis (2013) Rev. Endocr. Metab. Disord., 14, pp. 105-112
  • Chrousos, G.P., Zapanti, E.D., Hypothalamic-pituitary-adrenal axis in HIV infection and disease (2014) Endocrinology and Metabolism Clinics of North America, , https://doi.org/10.1016/j.ecl.2014.06.002l
  • Rey, A.D., Endocrine and cytokine responses in humans with pulmonary tuberculosis (2007) Brain. Behav. Immun., 21, pp. 171-179
  • Bottasso, O., Bay, M.L., Besedovsky, H., Del Rey, A., Adverse neuro-immune-endocrine interactions in patients with active tuberculosis (2013) Mol. Cell. Neurosci., 53, pp. 77-85
  • Quiroga, M.F., Dynamics of adrenal steroids are related to variations in Th1 and treg populations during mycobacterium tuberculosis infection in HIV positive persons (2012) PLoS One, 7, p. e33061
  • Pérez, A.R., Bottasso, O., Savino, W., The impact of infectious diseases upon neuroendocrine circuits (2009) Neuroimmunomodulation, 16, pp. 96-105
  • Kamin, H.S., Kertes, D.A., Cortisol and DHEA in development and psychopathology (2016) Horm. Behav., 89, pp. 69-85
  • Pluchino, N., Neurobiology of DHEA and effects on sexuality, mood and cognition (2015) J. Steroid Biochem. Mol. Biol., 145, pp. 273-280
  • Eberling, P., Koivisto, V.A., Physiological importance of dehydroepiandrosterone (1994) Lancet, 343, pp. 1479-1481
  • Loria, R., Ben-Nathan, D., Protective effects of DHEA and AED against viral, bacterial and parasitic infections (2011) Isr. J. Vet. Med., 66, pp. 119-129
  • Suzuki, T., Suzuki, N., Daynes, R.A., Engleman, E.G., Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells (1991) Clin. Immunol. Immunopathol., 61, pp. 202-211
  • Romanutti, C., In vitro antiviral activity of dehydroepiandrosterone and its synthetic derivatives against vesicular stomatitis virus (2009) Vet. J., 182, pp. 327-335
  • Torres, N.I., In vitro antiviral activity of dehydroepiandrosterone, 17 synthetic analogs and ERK modulators against herpes simplex virus type 1 (2012) Antiviral Res., 95, pp. 37-48
  • Ramírez, J.A., Syntheses of immunomodulating androstanes and stigmastanes: Comparison of their TNF-A inhibitory activity (2007) Bioorganic Med. Chem., 15, pp. 7538-7544
  • Angerami, M., Modulation of the phenotype and function of mycobacterium tuberculosis-stimulated dendritic cells by adrenal steroids (2013) Int. Immunol., 25, pp. 405-411
  • Suarez, G.V., HIV-TB coinfection impairs CD8+ T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses (2015) Eur. J. Immunol., 45, pp. 2529-2541
  • Traish, A.M., Kang, P., Farid Saad, D., Guay, A.T., Dehydroepiandrosterone (DHEA)-A precursor steroid or an active hormone in human physiology (CME) (2011) C., 8, pp. 2960-2982
  • Hernandez-Pando, R., The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice (1998) Immunology, 95, pp. 234-241
  • Ben-Nathan, D., Padgett, D.A., Loria, R.M., Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity (1999) J. Med. Microbiol., 48, pp. 425-431
  • Padgett, D.S., Loria, R.M., Endocrine regulation of murine macrophage function: Effects of dehydroepiandrosterone, androstenediol, and androstenetriol (1998) J. Neuroimmunol., 84, pp. 61-68
  • Loria, R.M., Conrad, D.H., Huff, T., Carter, H., Ben-Nathan, D., Androstenetriol and androstenediol protection against lethal radiation and restoration of immunity after radiation injury (2000) Ann. New York Acad. Sci., 917, pp. 860-867
  • El Kihel, L., Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)-recent reports (2012) Steroids, 77, pp. 10-26
  • Shi, J., Schulze, S., Lardy, H.A., The effect of 7-oxo-DHEA acetate on memory in young and old C57BL/6 mice (2000) Steroids, 65, pp. 124-129
  • Mo, Q., Lu, S., Simon, N.G., Dehydroepiandrosterone and its metabolites: Differential effects on androgen receptor trafficking and transcriptional activity (2006) J. Steroid Biochem. Mol. Biol., 99, pp. 50-58
  • Miller, K.K.M., DHEA metabolites activate estrogen receptors alpha and beta (2013) Steroids, 78, pp. 15-25
  • Marwah, P., Marwah, A., Lardy, H.A., Miyamoto, H., Chang, C., C19-steroids as androgen receptor modulators: Design, discovery, and structure-activity relationship of new steroidal androgen receptor antagonists (2006) Bioorg. Med. Chem., 14, pp. 5933-5947
  • González, G.A., Herrador, A.M., A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles (2007) Trends Anal. Chem., 26, pp. 227-238
  • (2001) Guidance for Industry: Bioanalytical Method Validation, , https://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf
  • Hu, S., Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials (2008) Green Chem., 10, p. 1280
  • Matuszewski, B.K., Constanzer, M.L., Chavez-Eng, C.M., Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS (2003) Anal. Chem., 75, pp. 3019-3030
  • Bloem, L.M., Advances in the analytical methodologies: Profiling steroids in familiar pathways-challenging dogmas (2015) J. Steroid Biochem. Mol. Biol., 153, pp. 1-13
  • Jeanneret, F., Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations (2015) J. Chromatogr. A, , https://doi.org/10.1016/j.chroma.2015.07.008
  • El-Khoury, M.J., Wang, S., Liquid chromatography-tandem mass spectrometry in the clinical laboratory (2013) J. Chromatogr. Sep. Tech., 4, p. 1000e115
  • Methlie, P., Multisteroid LC-MS/MS assay for glucocorticoids and androgens, and its application in Addison's disease (2013) Endocr. Connect, 2, pp. 125-136
  • Pauwels, S., Sensitive routine liquid chromatography-tandem mass spectrometry method for serum estradiol and estrone without derivatization (2013) Anal. Bioanal. Chem., 405, pp. 8569-8577
  • Gao, W., Stalder, T., Kirschbaum, C., Quantitative analysis of estradiol and six other steroid hormones in human saliva using a high throughput liquid chromatography-tandem mass spectrometry assay (2015) Talanta, 143, pp. 353-358
  • Abdel-Khalik, J., Björklund, E., Hansen, M., Simultaneous determination of endogenous steroid hormones in human and animal plasma and serum by liquid or gas chromatography coupled to tandem mass spectrometry (2013) J. Chromatogr. B, 928, pp. 58-77
  • Sosvorova, L., Vitku, J., Chlupacova, T., Mohapl, M., Hampl, R., Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS (2015) Steroids, 98, pp. 1-8
  • Ke, Y., Bertin, J., Gonthier, R., Simard, J.-N., Labrie, F., A sensitive, simple and robust LC-MS/MS method for the simultaneous quantification of seven androgen- and estrogen-related steroids in postmenopausal serum (2014) J. Steroid Biochem. Mol. Biol., 144, pp. 523-534
  • Minkler, P., Hoppel, C., Separation and characterization of cardiolipin molecular species by reverse-phase ion pair highperformance liquid chromatography-mass spectrometry (2010) J Lipid Res, 51, pp. 856-865
  • Huan, T., MyCompoundID MS/MS search: Metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites (2015) Anal. Chem., 87, pp. 10619-10626
  • Taylor, P.J., Matrix effects: The achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry (2005) Clin. Biochem., 38, pp. 328-334
  • Imrie, G.A., Lough, W.J., Noctor, T.A.G., Drug bioanalysis by LC-MS: Some pragmatic solutions to commonly occurring problems (2009) Chromatogr. Today, pp. 27-30
  • Li, W., Cohen, L.H., Quantitation of endogenous analytes in biofluid without a true blank matrix (2003) Anal. Chem., 75, pp. 5854-5859
  • Jemal, M., Schuster, A., Whigan, D.B., Liquid chromatography/tandem mass spectrometry methods for quantitation of mevalonic acid in human plasma and urine: Method validation, demonstration of using a surrogate analyte, and demonstration of unacceptable matrix effect in spite of use of a stable (2003) Rapid Commun. Mass Spectrom., 17, pp. 1723-1734
  • Wudy, S.A., Synthetic procedures for the preparation of deuterium-labeled analogs of naturally occurring steroids (1990) Steroids, 55, pp. 463-471
  • Galuska, C.E., Profiling intact steroid sulfates and unconjugated steroids in biological fluids by liquid chromatography-tandem mass spectrometry (LC-MS-MS) (2013) Analyst, 138, pp. 3792-3801
  • Landvatter, S.W., Comparison of Deuterium, 13C, and 15N Isotopic Labels in Mass Spec Standards
  • Kolatorova Sosvorova, L., Sarek, J., Vitku, J., Kvasnica, M., Synthesis of 3α-deuterated 7α-hydroxy-DHEA and 7-oxo-DHEA and application in LC-MS/MS plasma analysis (2016) Steroids, 112, pp. 88-94
  • Marwah, A., Marwah, P., Lardy, H., High-performance liquid chromatographic analysis of dehydroepiandrosterone (2001) J. Chromatogr. A, 935, pp. 279-296
  • Prabu, S.L., Suriyaprakash, T., Extraction of drug from the biological matrix: A review (2012) Appl. Biol. Eng. Pract., pp. 479-507. , https://doi.org/10.1333/s00897970137a
  • Rasheed, S., Yan, J.S., Lau, A., Chan, A.S., HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: A proteomics study (2008) PLoS One, p. 3
  • Ogunro, P.S., Idogun, E.S., Ogungbamigbe, T.O., Ajala, M.O., Olowu, O.A., Serum concentration of acute phase protein and lipid profile in HIV-1 seropositive patients and its relationship to the progression of the disease (2008) Niger. Postgrad. Med. J., 15, pp. 219-224
  • Bottasso, O., Bay, M.L., Besedovsky, H., Del Rey, A., The immuno-endocrine component in the pathogenesis of tuberculosis (2007) Scand. J. Immunol., 66, pp. 166-175
  • Song, S.H., Proteomic profiling of serum from patients with tuberculosis (2014) Ann. Lab. Med., 34, pp. 345-353
  • Seddon, J., Procollagen III N-terminal propeptide and desmosine are released by matrix destruction in pulmonary tuberculosis (2013) J. Infect. Dis., 208, pp. 1571-1578
  • Achkar, J.M., Host protein biomarkers identify active tuberculosis in HIV uninfected and co-infected individuals (2015) EBioMedicine, 2, pp. 1160-1168
  • Bongiovanni, B., Changes in the immune and endocrine responses of patients with pulmonary tuberculosis undergoing specific treatment (2012) Ann. N. Y. Acad. Sci., 1262, pp. 10-15
  • Lo, J., Grinspoon, S.K., Adrenal function in HIV infection (2010) Curr. Opin. Endocrinol. Diabetes. Obes., 17, pp. 205-209
  • Bons, J., Moreau, L., Lefebvre, H., Adrenal disorders in human immunodeficiency virus (HIV) infected patients (2013) Ann. Endocrinol. (Paris)., 74, pp. 508-514
  • Findling, J.W., Longitudinal evaluation of function in patients infected with the human immunodeficiency virus (1994) J. Clin. Endocrinol. Metab., 79, pp. 1091-1096
  • Treitinger, A., Lipid and acute-phase protein alterations in HIV-1 infected patients in the early stages of infection: Correlation with CD4+ lymphocytes (2001) Braz. J. Infect. Dis., 5, pp. 192-199
  • Siddique, M.A., Low CD4+ T cell nadir is an independent predictor of lower HIV-specific immune eesponses in chronically HIV-1-infected subjects receiving highly active antiretroviral therapy (2006) J. Infect. Dis., 194, pp. 661-665
  • Manosuthi, W., Chottanapand, S., Thongyen, S., (2006) Survival Rate and Risk Factors of Mortality among HIV/tuberculosis-coinfected Patients with and Without Antiretroviral Therapy, 43, pp. 42-46
  • Achhra, A.C., Petoumenos, K., Law, M.G., Relationship between CD4 cell count and serious long-term complications among HIV-positive individuals (2014) Curr. Opin. HIV AIDS, 9, pp. 63-71
  • Santos, A.C.O., Almeida, A.M.R., Nutritional status and CD4 cell counts in patients with HIV/AIDS receiving antiretroviral therapy (2013) Rev. Soc. Bras. Med. Trop., 46, pp. 698-703
  • Diedrich, C.R., Flynn, J.L., HIV-1/Mycobacterium tuberculosis coinfection immunology: How does HIV-1 exacerbate tuberculosis? (2011) Infect. Immun., 79, pp. 1407-1417
  • Kaufmann, S.H.E., Cole, S.T., Mizrahi, V., Rubin, E., Nathan, C., Mycobacterium tuberculosis and the host response (2005) J. Exp. Med., 201, pp. 1693-1697
  • Lawn, S.D., Tuberculosis and HIV co-infection (2005) Medicine (Baltimore)., 33, pp. 112-113
  • Yang, Z., Identification of risk factors for extrapulmonary tuberculosis (2004) Clin Inf Dis, 38, pp. 199-205
  • Castilla, J., Pulmonary and extrapulmonary tuberculosis at AIDS diagnosis in Spain: Epidemiological differences and implications for control (1997) AIDS, 11, pp. 1583-1588
  • Van De-Beek, D., De Gans, J., McIntyre, P., Prasad, K., Steroids in adults with acute bacterial meningitis: A systematic review (2004) Lancet Infect. Dis., 4, pp. 139-143
  • Matchaba, P.T., Volmink, J., Steroids for treating tuberculous pleurisy (review) (2000) Cochrane Database Syst. Rev., p. CD001876. , https://doi.org/10.1002/14651858.CD001876
  • Dhama, K., Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications (2015) International Journal of Pharmacology, 11, pp. 253-290
  • Liu, X.-K., Synthesis and antitumor activity of dehydroepiandrosterone derivatives on Es-2, A549, and HepG2 cells in vitro (2012) Chem. Biol. Drug Des., 79, pp. 523-529
  • Silvestre, S.M., Salvador, J.A.R., Allylic and benzylic oxidation reactions with sodium chlorite (2007) Tetrahedron, 63, pp. 2439-2445
  • Astná, E., Erný, I., Pouzar, V., Chodounská, H., Stereoselectivity of sodium borohydride reduction of saturated steroidal ketones utilizing conditions of luche reduction (2010) Steroids, 75, pp. 721-725
  • (2016) Guidelines for the Use of Antiretroviral Agents in HIV-1-infected Adults and Adolescents, , http://www.aidsinfo.nih.gov/ContentFiles/Adul-tandAdolescentGL.pdf
  • Shabir, G.A., (2006) Step-by-step Analytical Methods Validation and Protocol in the Quality System Compliance Industry, pp. 4-14. , https://pdfs.semanticscholar.org/6871/8039ed36445c5e02c1100f21632f6858eff1.pdf
  • Shabir, G., A practical approach to validation of HPLC methods under current good manufacturing practices (2004) J. Valid. Technol., pp. 29-37
  • Taverniers, I., De Loose, M., Van Bockstaele, E., Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance (2004) TrAC Trends Anal. Chem., 23, pp. 535-552
  • Jurado, J., (2008) Aplicacion de Microsoft Excel A la Quimica Analitica: Validacion de Metodos Analiticos, , http://personal.us.es/jmjurado/docs/AQAEXCEL.pdf
  • Marwah, A., Marwah, P., Lardy, H., Analysis of ergosteroids: VIII: Enhancement of signal response of neutral steroidal compounds in liquid chromatographic-electrospray ionization mass spectrometric analysis by mobile phase additives (2002) J. Chromatogr. A, 964, pp. 137-151

Citas:

---------- APA ----------
Vecchione, M.B., Eiras, J., Suarez, G.V., Angerami, M.T., Marquez, C., Sued, O., Ben, G.,..., Bruttomesso, A.C. (2018) . Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-24771-8
---------- CHICAGO ----------
Vecchione, M.B., Eiras, J., Suarez, G.V., Angerami, M.T., Marquez, C., Sued, O., et al. "Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-24771-8
---------- MLA ----------
Vecchione, M.B., Eiras, J., Suarez, G.V., Angerami, M.T., Marquez, C., Sued, O., et al. "Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-24771-8
---------- VANCOUVER ----------
Vecchione, M.B., Eiras, J., Suarez, G.V., Angerami, M.T., Marquez, C., Sued, O., et al. Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-24771-8