Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Epigenetic mechanisms (i.e., histone post-translational modification and DNA methylation) play a role in regulation of gene expression. The pedunculopontine nucleus (PPN), part of the reticular activating system, manifests intrinsic gamma oscillations generated by voltage-dependent, high threshold N- and P/Q-type Ca 2+ channels. We studied whether PPN intrinsic gamma oscillations are affected by inhibition of histone deacetylation. We showed that, a) acute in vitro exposure to the histone deacetylation Class I and II inhibitor trichostatin A (TSA, 1 μM) eliminated oscillations in the gamma range, but not lower frequencies, b) pre-incubation with TSA (1 μM, 90–120 min) also decreased gamma oscillations, c) Ca 2+ currents (I Ca ) were reduced by TSA, especially on cells with P/Q-type channels, d) a HDAC Class I inhibitor MS275 (500 nM), and a Class IIb inhibitor Tubastatin A (150–500 nM), failed to affect gamma oscillations, e) MC1568, a HDAC Class IIa inhibitor (1 μM), blocked gamma oscillations, and f) the effects of both TSA and MC1568 were blunted by blockade of CaMKII with KN-93 (1 μM). These results suggest a cell type specific effect on gamma oscillations when histone deacetylation is blocked, suggesting that gamma oscillations through P/Q-type channels modulated by CaMKII may be linked to processes related to gene transcription. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus
Autor:Urbano, F.J.; Bisagno, V.; Mahaffey, S.; Lee, S.-H.; Garcia-Rill, E.
Filiación:Center for Translational Neuroscience, Department Neurobiology & Dev. Sci., University of Arkansas for Medical Sciences, Little Rock, AR, United States
IFIBYNE, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
ININFA, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
Department Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-31584-2
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Urbano

Referencias:

  • Cadet, J.L., Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications (2016) Mol. Neurobiol, 53, pp. 545-560. , PID: 25502297
  • Haberland, M., Montgomery, R.L., Olson, E.N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy (2009) Nat. Rev. Genet., 10, pp. 32-42. , PID: 19065135
  • Broide, R.S., Distribution of histone deacetylases 1-11 in the rat brain (2007) J. Mol. Neurosci., 31, pp. 47-58. , PID: 17416969
  • Akhtar, M.W., Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function (2009) J. Neurosci., 29, pp. 8288-8297. , PID: 19553468
  • Calfa, G., HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons (2012) Hippocampus, 22, pp. 1493-1500. , PID: 22161912
  • West, A.C., Johnstone, R.W., New and emerging HDAC inhibitors for cancer treatment (2014) J. Clin. Invest., 124, pp. 30-39. , PID: 24382387
  • Didonna, A., Opal, P., (2015) The promise and perils of HDAC inhibitors in neurodegeneration (2015) Ann. Clin. Transl. Neurol., 2, pp. 79-101. , PID: 25642438
  • Subramanian, S., Bates, S.E., Wright, J.J., Espinoza-Delgado, I., Piekarz, R.L., Clinical Toxicities of Histone Deacetylase Inhibitors (2010) Pharmaceuticals (Basel), 3, pp. 2751-2767
  • Garcia-Rill, E., Gamma band activity in the RAS-intracellular mechanisms (2014) Exp. Brain Res., 232, pp. 1509-1522. , PID: 24309750
  • Garcia-Rill, E., Implications of gamma band activity in the pedunculopontine nucleus (2015) J. Neural Transm., 123, pp. 655-665. , PID: 26597124
  • Garcia-Rill, E., Luster, B., Mahaffey, S., Bisagno, V., Urbano, F.J., Pedunculopontine arousal system physiology- implications for insomnia (2015) Sleep Sci., 8, pp. 92-99. , PID: 26483950
  • Urbano, F.J., Pedunculopontine nucleus gamma band activity- preconscious awareness, waking, and REM sleep (2014) Front. Sleep Chronobiol., 5, p. 210
  • Kezunovic, N., Mechanism behind gamma band activity in the pedunculopontine nucleus (PPN) (2011) Eur. J. Neurosci., 34, pp. 404-415. , PID: 21722210
  • Kezunovic, N., Muscarinic modulation of high frequency activity in pedunculopontine neurons (2013) Front. Neurol., 4, p. 176. , PID: 24223570
  • Butler, K.V., Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A (2010) J. Am. Chem. Soc., 132, pp. 10842-10846. , PID: 20614936
  • Mai, A., Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides (2009) J. Med. Chem., 48, pp. 3344-3353
  • Nebbioso, A., Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes (2009) EMBO Rep., 10, pp. 776-782. , PID: 19498465
  • Venza, I., Class II-specific histone deacetylase inhibitors MC1568 and MC1575 suppress IL-8 expression in human melanoma cells (2013) Pigment. Cell Melanoma Res., 26, pp. 193-204. , PID: 23176534
  • Di Giorgio, E., Gagliostro, E., Brancolini, C., Selective class IIa HDAC inhibitors: myth or reality (2015) Cell. Mol. Life Sci., 72, pp. 73-86. , PID: 25189628
  • Buzsáki, G., Draguhn, A., Neuronal oscillations in cortical networks (2004) Science, 304, pp. 1926-1929. , PID: 15218136
  • Garcia-Rill, E., (2015) Waking and the Reticular Activating System, p. 330. , Academic Press
  • Wang, H.L., Morales, M., Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat (2009) Eur. J. Neurosci., 29, pp. 340-358. , PID: 19200238
  • Sakai, K., El Mansari, M., Jouvet, M., Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats (1990) Brain Res., 527, pp. 213-223. , PID: 2253034
  • Steriade, M., Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves (1990) J. Neurosci., 10, pp. 2560-2579. , PID: 2201752
  • Kayama, Y., Ohta, M., Jodo, E., Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness (1992) Brain Res., 569, pp. 210-220. , PID: 1540827
  • Datta, S., Siwek, D.F., Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats (2002) J. Neurosci. Res., 70, pp. 79-82
  • Datta, S., Siwek, D.F., Stack, E.C., Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep (2009) Neurosci., 163, pp. 397-414
  • Boucetta, S., Discharge profiles across the sleep-waking cycle of identified cholinergic, gabaergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat (2014) J. Neurosci., 34, pp. 4708-4727. , PID: 24672016
  • Fraix, V., Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease (2013) PLoS One, 8. , PID: 24386308
  • Goetz, L., The primate pedunculopontine nucleus region: towards a dual role in locomotion and waking state (2016) J. Neural Transm., 123, pp. 667-678. , PID: 27216823
  • D’Onofrio, S., Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder (2015) J. Neurophysiol., 113, pp. 709-719. , PID: 25376789
  • Luster, B., High-Threshold Ca2+ channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol (2015) Rep., 3
  • Luster, B., Urbano, F.J., Garcia-Rill, E., Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol (2016) Rep., 4 (12)
  • Yoshida, M., Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A (1990) J. Biol. Chem., 265, pp. 17174-17179. , PID: 2211619
  • Huang, Y., Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus (2002) J. Neurosci., 22, pp. 8422-8428. , PID: 12351716
  • McKenzie, G.J., Nuclear Ca 2+ and CaM kinase IV specify hormonal- and Notch-responsiveness (2005) J. Neurochem., 93, pp. 171-185. , PID: 15773917
  • Oliveira, J.M., Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors (2006) J. Neurosci., 26, pp. 11174-11186. , PID: 17065457
  • Takano, K., Histone deacetylase inhibition prevents cell death induced by loss of tricellular tight junction proteins in temperature-sensitive mouse cochlear cells Plos ONE, 12
  • Clayton, A.L., Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation (2000) EMBO J., 19, pp. 3714-3726. , PID: 10899125
  • Khan, D.H., Davie, J.R., HDAC inhibitors prevent the induction of the immediate-early gene FOSL1, but do not alter the nucleosome response (2013) FEBS Lett., 587, pp. 1510-1517. , PID: 23542037
  • Simon, C., Gamma band unit activity and population responses in the pedunculopontine nucleus (2010) J. Neurophysiol., 104, pp. 463-474. , PID: 20463196
  • Garcia-Rill, E., Coherence and frequency in the reticular activating system (RAS) (2013) Sleep Med. Rev., 17, pp. 227-238. , PID: 23044219
  • Garcia-Rill, E., The 10 Hz Frequency: a fulcrum for transitional brain states (2016) Transl. Brain Rhyth., 1, pp. 7-13
  • Garcia-Rill, E., (2016) Arousal and the control of perception and movement (2016) Curr. Trends Neurol., 10, pp. 53-64. , PID: 28690375
  • Kezunovic, N., Gamma band activity in the developing parafascicular nucleus (2012) J. Neurophysiol., 107, pp. 772-784. , PID: 22090455
  • Hyde, J., Visualization of fast calcium oscillations in the parafascicular nucleus (2013) Pflugers Arch., 465, pp. 1327-1340. , PID: 23588378
  • Cavelli, M., Coherent neocortical gamma oscillations decrease during REM sleep in the rat (2015) Behav. Brain Res., 281, pp. 318-325. , PID: 25557796
  • Torterolo, P., Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy (2016) Eur. J. Neurosci., 43, pp. 580-589. , PID: 26670051
  • Barbado, M., Gene regulation by voltage-dependent calcium channels. Biochimica Biophys (2009) Acta, 1793, pp. 1096-1104
  • Schorge, S., Rajakulendran, S., The P/Q channel in human disease: untangling the genetics and physiology (2012) WIREs Membr. Transp. Signal, 1, pp. 311-320
  • Jou vet-Mounier, D., Astic, L., Lacote, D., Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month (1970) Dev. Psychobiol., 2, pp. 216-239
  • Garcia-Rill, E., The developmental decrease in REM sleep: the role of transmitters and electrical coupling (2008) Sleep, 31, pp. 673-690. , PID: 18517037
  • Ye, M., Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons (2010) J. Neurophysiol., 103, pp. 2417-2432. , PID: 20181729
  • Garcia-Rill, E., Heister, D.S., Ye, M., Charlesworth, A., Hayar, A., Electrical coupling: novel mechanism for sleep-wake control (2007) Sleep, 30, pp. 1405-1414. , PID: 18041475
  • Hsu, C.W., Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay (2016) J. Biomol. Screen, 21, pp. 643-652. , PID: 26858181
  • Wang, Y., HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells (2009) Neurosci. Lett., 467, pp. 212-216. , PID: 19835929
  • Formisano, L., MS-275 inhibits aroclor 1254-induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter (2015) J. Pharmacol. Exp. Ther., 352, pp. 236-243. , PID: 25467131

Citas:

---------- APA ----------
Urbano, F.J., Bisagno, V., Mahaffey, S., Lee, S.-H. & Garcia-Rill, E. (2018) . Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-31584-2
---------- CHICAGO ----------
Urbano, F.J., Bisagno, V., Mahaffey, S., Lee, S.-H., Garcia-Rill, E. "Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-31584-2
---------- MLA ----------
Urbano, F.J., Bisagno, V., Mahaffey, S., Lee, S.-H., Garcia-Rill, E. "Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-31584-2
---------- VANCOUVER ----------
Urbano, F.J., Bisagno, V., Mahaffey, S., Lee, S.-H., Garcia-Rill, E. Class II histone deacetylases require P/Q-type Ca 2+ channels and CaMKII to maintain gamma oscillations in the pedunculopontine nucleus. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-31584-2