Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress
Autor:Sigaut, L.; Von Bilderling, C.; Bianchi, M.; Burdisso, J.E.; Gastaldi, L.; Pietrasanta, L.I.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Centro de Microscopías Avanzadas (CMA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires, C1425FQB, Argentina
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-27948-3
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Sigaut

Referencias:

  • Geiger, B., Spatz, J.P., Bershadsky, A.D., Environmental sensing through focal adhesions (2009) Nat Rev Mol Cell Biol, 10, pp. 21-33
  • Winograd-Katz, S.E., Fässler, R., Geiger, B., Legate, K.R., The integrin adhesome: From genes and proteins to human disease (2014) Nat Rev Mol Cell Biol, 15, pp. 273-288. , https://doi.org/10.1038/nrm3769,http://www.nature.com/nrm/journal/v15/n4/abs/nrm3769.html#supplementary-information
  • Baker, E.L., Bonnecaze, R.T., Zaman, M.H., Extracellular matrix stiffness and architecture govern intracellular rheology in cancer (2009) Biophysical Journal, 97, pp. 1013-1021. , https://doi.org/10.1016/j.bpj.2009.05.054
  • Horton, E.R., The integrin adhesome network at a glance (2016) Journal of Cell Science, 129, pp. 4159-4163
  • Wolfenson, H., Henis, Y.I., Geiger, B., Bershadsky, A.D., The heel and toe of the cell's foot: A multifaceted approach for understanding the structure and dynamics of focal adhesions (2009) Cell Motility and the Cytoskeleton, 66, pp. 1017-1029. , https://doi.org/10.1002/cm.20410
  • Arulmoli, J., Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner (2015) Scientific Reports, 5, p. 8499. , https://www.nature.com/articles/srep08499#supplementary-information
  • Charras, G.T., Horton, M.A., Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation (2002) Biophysical Journal, 82, pp. 2970-2981. , https://doi.org/10.1016/s0006-3495(02)75638-5
  • Shao, X., Li, Q., Mogilner, A., Bershadsky, A.D., Shivashankar, G.V., Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim (2015) Proc Natl Acad Sci USA, 112, pp. E2595-2601. , https://doi.org/10.1073/pnas.1504837112
  • Haase, K., Al-Rekabi, Z., Pelling, A.E., Mechanical cues direct focal adhesion dynamics (2014) Progress in Molecular Biology and Translational Science, 126, pp. 103-134. , https://doi.org/10.1016/B978-0-12-394624-9.00005-1
  • Kamble, H., Barton, M.J., Jun, M., Park, S., Nguyen, N.-T., Cell stretching devices as research tools: Engineering and biological considerations (2016) Lab on A Chip, 16, pp. 3193-3203. , https://doi.org/10.1039/c6lc00607h
  • Chen, Y., Pasapera, A.M., Koretsky, A.P., Waterman, C.M., Orientation-specific responses to sustained uniaxial stretching in focal adhesion growth and turnover (2013) Proceedings of the National Academy of Sciences, 110, pp. E2352-E2361. , https://doi.org/10.1073/pnas.1221637110
  • Brown, T.D., Techniques for mechanical stimulation of cells in vitro: A review (2000) Journal of Biomechanics, 33, pp. 3-14. , https://doi.org/10.1016/S0021-9290(99)00177-3
  • Wang, D., (2014) Tissue-specific Mechanical and Geometrical Control of Cell Viability and Actin Cytoskeleton Alignment, 4, p. 6160. , https://www.nature.com/articles/srep06160#supplementary-information, doi.org/10.1038/srep06160
  • Wang, J.H.C., Yang, G., Li, Z., Shen, W., Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction (2004) Journal of Biomechanics, 37, pp. 573-576. , https://doi.org/10.1016/j.jbiomech.2003.09.011
  • Ando, J., Yamamoto, K., Effects of shear stress and stretch on endothelial function (2011) Antioxid Redox Signal, 15 (5), pp. 1389-1403
  • Place, N., Yamada, T., Bruton, J.D., Westerblad, H., Muscle fatigue: From observations in humans to underlying mechanisms studied in intact single muscle fibres (2010) Eur J Appl Physiol., 110 (1), pp. 1-15
  • Isao, A., Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder (2008) J Urol., 15 (8), pp. 681-687
  • Marti, A., Feng, Z., Altermatt, H.J., Jaggi, R., Milk accumulation triggers apoptosis of mammary epithelial cells (1997) Eur J Cell Biol, 73 (2), pp. 158-165
  • Hynes, N.E., Epidermal growth factor receptor, but not c-ERBB-2, activation prevents lactogenic hormone induction of the beta-casein gene in mouse mammary epithelial cells (1990) Molecular and Cellular Biology, 10, pp. 4027-4034
  • Quaglino, A., Salierno, M., Pellegrotti, J., Rubinstein, N., Kordon, E.C., Mechanical strain induces involution-associated events in mammary epithelial cells (2009) BMC Cell Biology, 10, p. 55. , https://doi.org/10.1186/1471-2121-10-55
  • Sotoudeh, M., Jalali, S., Usami, S., Shyy, J.Y.J., Chien, S., A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells (1998) Annals of Biomedical Engineering, 26, pp. 181-189. , https://doi.org/10.1114/1.88
  • Bhatt, A., Kaverina, I., Otey, C., Huttenlocher, A., Regulation of focal complex composition and disassembly by the calciumdependent protease calpain (2002) Journal of Cell Science, 115, p. 3415
  • Fu, J., Mechanical regulation of cell function with geometrically modulated elastomeric substrates (2010) Nat Meth, 7, pp. 733-736. , http://www.nature.com/nmeth/journal/v7/n9/abs/nmeth.1487.html#supplementary-information
  • Zaidel-Bar, R., Kam, Z., Geiger, B., Polarized downregulation of the paxillin-p130CAS-Rac1 pathway induced by shear flow (2005) Journal of Cell Science, 118, p. 3997
  • Freeman, S.A., Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor (2017) Journal of Cell Science, 130, p. 152
  • Riveline, D., Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism (2001) The Journal of Cell Biology, 153, pp. 1175-1186
  • Von Bilderling, C., Caldarola, M., Masip, M.E., Bragas, A.V., Pietrasanta, L.I., Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus (2017) Review of Scientific Instruments, 88, p. 013703. , https://doi.org/10.1063/1.4973664
  • Mierke, C.T., The role of vinculin in the regulation of the mechanical properties of cells (2009) Cell Biochemistry and Biophysics, 53, pp. 115-126. , https://doi.org/10.1007/s12013-009-9047-6
  • Grashoff, C., Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics (2010) Nature, 466, pp. 263-266. , http://www.nature.com/nature/journal/v466/n7303/abs/nature09198.html#supplementary-information
  • Hernández-Varas, P., Berge, U., Lock, J.G., Strömblad, S., A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime (2015) Nat Commun., 6, p. 7524. , https://www.nature.com/articles/ncomms8524#supplementary-information, https://doi.org/10.1038/ncomms8524
  • Chang, C.-W., Kumar, S., Vinculin tension distributions of individual stress fibers within cell-matrix adhesions (2013) Journal of Cell Science, 126, p. 3021
  • Zaidel-Bar, R., Ballestrem, C., Kam, Z., Geiger, B., Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells (2003) Journal of Cell Science, 116, p. 4605
  • Yoshigi, M., Hoffman, L.M., Jensen, C.C., Yost, H.J., Beckerle, M.C., Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement (2005) The Journal of Cell Biology, 171, p. 209
  • Hoffman, L.M., Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling (2006) The Journal of Cell Biology, 172, p. 771
  • Smith, M.A., A zyxin-mediated mechanism for actin stress fiber maintenance and repair (2010) Developmental Cell, 19, pp. 365-376. , https://doi.org/10.1016/j.devcel.2010.08.008
  • Colombelli, J., Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization (2009) Journal of Cell Science, 122, p. 1665
  • Guo, W.-H., Wang, Y.-L., Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals (2007) Molecular Biology of the Cell, 18, pp. 4519-4527. , https://doi.org/10.1091/mbc.E07-06-0582
  • Hoffman, L.M., Jensen, C.C., Chaturvedi, A., Yoshigi, M., Beckerle, M.C., Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators (2012) Molecular Biology of the Cell, 23, pp. 1846-1859. , https://doi.org/10.1091/mbc.E11-12-1057
  • Ngu, H., Effect of focal adhesion proteins on endothelial cell adhesion, motility and orientation response to cyclic strain (2010) Annals of Biomedical Engineering, 38, pp. 208-222. , https://doi.org/10.1007/s10439-009-9826-7
  • Wolfenson, H., Bershadsky, A., Henis, Y.I., Geiger, B., Actomyosin-generated tension controls the molecular kinetics of focal adhesions (2011) Journal of Cell Science, 124, p. 1425
  • Lele, T.P., Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells (2006) Journal of Cellular Physiology, 207, pp. 187-194. , https://doi.org/10.1002/jcp.20550
  • Lele, T.P., Thodeti, C.K., Ingber, D.E., Force meets chemistry: Analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching (2006) Journal of Cellular Biochemistry, 97, pp. 1175-1183. , https://doi.org/10.1002/jcb.20761
  • Sprague, B.L., Pego, R.L., Stavreva, D.A., McNally, J.G., Analysis of binding reactions by fluorescence recovery after photobleaching (2004) Biophysical Journal, 86, pp. 3473-3495. , https://doi.org/10.1529/biophysj.103.026765
  • Lele, T., Oh, P., Nickerson, J., Ingber, D.E., An improved mathematical approach for determination of molecular kinetics in living cells with FRAP (2004) Mech Chem Biosyst., 1 (3), pp. 181-190
  • Uehata, M., Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension (1997) Nature, 389, pp. 990-994
  • Muschler, J., Streuli, C.H., Cell-matrix interactions in mammary gland development and breast cancer (2010) Cold Spring Harbor Perspectives in Biology, 2. , https://doi.org/10.1101/cshperspect.a003202
  • Schedin, P., Keely, P.J., Mammary gland ecm remodeling, stiffness, and mechanosignaling in normal development and tumor progression (2011) Cold Spring Harbor Perspectives in Biology, 3. , https://doi.org/10.1101/cshperspect.a003228
  • Kaverina, I., Krylyshkina, O., Small, J.V., Microtubule targeting of substrate contacts promotes their relaxation and dissociation (1999) The Journal of Cell Biology, 146, p. 1033
  • Davies, P.F., Robotewskyj, A., Griem, M.L., Quantitative studies of endothelial cell adhesion Directional remodeling of focal adhesion sites in response to flow forces (1994) Journal of Clinical Investigation, 93, pp. 2031-2038
  • Galbraith, C.G., Yamada, K.M., Sheetz, M.P., The relationship between force and focal complex development (2002) The Journal of Cell Biology, 159, p. 695
  • Huang, L., Mathieu, P.S., Helmke, B.P., A stretching device for high-resolution live-cell imaging (2010) Annals of Biomedical Engineering, 38, pp. 1728-1740. , https://doi.org/10.1007/s10439-010-9968-7
  • Lee, A.A., An equibiaxial strain system for cultured cells (1996) Am J Physiol, 271
  • Ursekar, C.P., Design and construction of an equibiaxial cell stretching system that is improved for biochemical analysis (2014) PLOS ONE, 9, p. e90665
  • Landel, R.F., Nielsen, L.E., (1993) Mechanical Properties of Polymers and Composites, , CRC Press
  • Kristian Sveen, J., (2011) An Introduction to MatPIV V. 1.6.1
  • Baxter, S., (2011) Mechanobiology Handbook, pp. 3-22. , CRC Press
  • Hung, C.T., Williams, J.L., A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates (1994) J Biomech, 27 (2), pp. 227-232. , https://doi.org/10.1016/0021-9290(94)90212-7
  • Davies, S.P., Reddy, H., Caivano, M., Cohen, P., Specificity and mechanism of action of some commonly used protein kinase inhibitors (2000) Biochemical Journal, 351, p. 95
  • Ishizaki, T., Pharmacological properties of y-27632, a specific inhibitor of rho-associated kinases (2000) Molecular Pharmacology, 57, p. 976
  • Otsu, N., A threshold selection method from gray-level histograms (1979) IEEE Transactions on Systems, Man, and Cybernetics, 9, pp. 62-66. , https://doi.org/10.1109/tsmc.1979.4310076
  • Jalink, K., Van Rheenen, J., (2009) FRET and FLIM Techniques. Laboratory Techniques in Biochemistry and Molecular Biology, 33, pp. 289-349. , (ed Theodorus Gadella) Ch. 7Elsevier
  • Kaufman, E.N., Jain, R.K., Quantification of transport and binding parameters using fluorescence recovery after photobleaching Potential for in vivo applications (1990) Biophysical Journal, 58, pp. 873-885. , https://doi.org/10.1016/S0006-3495(90)82432-2

Citas:

---------- APA ----------
Sigaut, L., Von Bilderling, C., Bianchi, M., Burdisso, J.E., Gastaldi, L. & Pietrasanta, L.I. (2018) . Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-27948-3
---------- CHICAGO ----------
Sigaut, L., Von Bilderling, C., Bianchi, M., Burdisso, J.E., Gastaldi, L., Pietrasanta, L.I. "Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-27948-3
---------- MLA ----------
Sigaut, L., Von Bilderling, C., Bianchi, M., Burdisso, J.E., Gastaldi, L., Pietrasanta, L.I. "Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-27948-3
---------- VANCOUVER ----------
Sigaut, L., Von Bilderling, C., Bianchi, M., Burdisso, J.E., Gastaldi, L., Pietrasanta, L.I. Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-27948-3