Artículo

Ramos, P.I.P.; Fernández Do Porto, D.; Lanzarotti, E.; Sosa, E.J.; Burguener, G.; Pardo, A.M.; Klein, C.C.; Sagot, M.-F.; De Vasconcelos, A.T.R.; Gales, A.C.; Marti, M.; Turjanski, A.G.; Nicolás, M.F. "An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens. © 2018 The Author(s).

Registro:

Documento: Artículo
Título:An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets
Autor:Ramos, P.I.P.; Fernández Do Porto, D.; Lanzarotti, E.; Sosa, E.J.; Burguener, G.; Pardo, A.M.; Klein, C.C.; Sagot, M.-F.; De Vasconcelos, A.T.R.; Gales, A.C.; Marti, M.; Turjanski, A.G.; Nicolás, M.F.
Filiación:Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad de Buenos Aires, C1428EHA, Argentina
Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, Ciudad de Buenos Aires, C1428EHA, Argentina
Inria Grenoble Rhône-Alpes, Grenoble, France
Université Claude Bernard Lyon 1, Lyon, France
Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, São Paulo, Brazil
Centre for Genomic Regulation (CRG), Plataforma de Bioinformática Argentina (BIA), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Barcelona, Catalonia, Spain
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-28916-7
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_Ramos

Referencias:

  • (2015) Worldwide Country Situation Analysis: Response to Antimicrobial Resistance, , World Health Organization
  • Projan, S.J., Why is big Pharma getting out of antibacterial drug discovery (2003) Curr. Opin. Microbiol., 6, pp. 427-430
  • Radusky, L.G., An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets (2015) BMC Genomics, 16, p. S9
  • Cloete, R., Oppon, E., Murungi, E., Schubert, W.-D., Christoffels, A., Resistance related metabolic pathways for drug target identification in Mycobacterium tuberculosis (2016) BMC Bioinformatics, 17, p. 75
  • Kaur, D., Kutum, R., Dash, D., Brahmachari, S.K., Data intensive genome level analysis for identifying novel, non-toxic drug targets for multi drug resistant mycobacterium tuberculosis (2017) Sci. Rep., 7, p. 46595
  • Lee, D.-Y., Chung, B.K.S., Yusufi, F.N.K., Selvarasu, S., In silico genome-scale modeling and analysis for identifying antitubercular drug targets (2010) Drug Dev. Res., 72, pp. 121-129
  • Hasan, S., Daugelat, S., Rao, P.S.S., Schreiber, M., Prioritizing genomic drug targets in pathogens: Application to Mycobacterium tuberculosis (2006) PLoS Comput. Biol., 2, p. e61
  • Defelipe, L.A., A whole genome bioinformatic approach to determine potential latent phase specific targets in Mycobacterium tuberculosis (2016) Tuberculosis, 97, pp. 181-192
  • Song, J.-H., Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis (2005) Mol. Cells, 19, pp. 365-374
  • Shanmugam, A., Natarajan, J., Computational genome analyses of metabolic enzymes in Mycobacterium leprae for drug target identification (2010) Bioinformation, 4, pp. 392-395
  • Neelapu, N., Mutha, N., Akula, S., Identification of Potential Drug Targets in Helicobacter pylori Strain HPAG1 by in silico GenomeAnalysis (2015) Infectious Disorders - Drug Targets, 15, pp. 106-117
  • Bhardwaj, T., Somvanshi, P., Pan-genome analysis of Clostridium botulinum reveals unique targets for drug development (2017) Gene, 623, pp. 48-62
  • Muhammad, S.A., Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach (2014) Genomics, 104, pp. 24-35
  • Uddin, R., Jamil, F., Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and protein-Protein interaction network (2018) Comput. Biol. Chem., , https://doi.org/10.1016/j.compbiolchem.2018.02.017
  • Mondal, S.I., Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: An in silico approach (2015) Adv. Appl. Bioinform. Chem, 49
  • Hadizadeh, M., Genome-Wide identification of potential drug target in enterobacteriaceae family: A homology-based method (2017) Microb. Drug Resist., , https://doi.org/10.1089/mdr.2016.0259
  • Wadood, A., The methicillin-resistant S. epidermidis strain RP62A genome mining for potential novel drug targets identification (2017) Gene Reports, 8, pp. 88-93
  • Farha, M.A., Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams (2012) ACS Chem. Biol., 8, pp. 226-233
  • Starkey, M., Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity (2014) PLoS Pathog., 10, p. e1004321
  • Cai, X., The effect of the potential phoq histidine kinase inhibitors on shigella flexneri virulence (2011) PLoS One, 6, p. e23100
  • Qin, Z., Structure-based discovery of inhibitors of the YycG histidine kinase: New chemical leads to combat Staphylococcus epidermidis infections (2006) BMC Microbiol., 6, p. 96
  • Podschun, R., Ullmann, U., Klebsiella spp. As nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors (1998) Clin. Microbiol. Rev., 11, pp. 589-603
  • Podschun, R., Pietsch, S., Höller, C., Ullmann, U., Incidence of Klebsiella species in surface waters and their expression of virulence factors (2001) Appl. Environ. Microbiol., 67, pp. 3325-3327
  • (2016) Bulletin on Patient Security and Health Services Quality, , https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes, Technical Report ANVISA (Brazilian Health Surveillance Agency)
  • Braun, G., Cayô, R., Matos, A.P., De Mello Fonseca, J., Gales, A.C., Temporal evolution of polymyxin B-resistant Klebsiella pneumoniae clones recovered from blood cultures in a teaching hospital during a 7-year period (2018) Int. J. Antimicrob. Agents, 51, pp. 522-527
  • Bartolleti, F., Polymyxin b resistance in carbapenem-resistanti klebsiella pneumoniae, são paulo, Brazil (2016) Emerg. Infect. Dis., 22, pp. 1849-1851
  • Tiwari, V., Tiwari, M., Solanki, V., Polyvinylpyrrolidone-Capped silver nanoparticle inhibits infection of carbapenem-resistant strain of acinetobacter baumannii in the human pulmonary epithelial cell (2017) Front. Immunol., 8, p. 973
  • Diago-Navarro, E., Novel, broadly reactive anticapsular antibodies against carbapenem-resistant klebsiella pneumonia protect from infection (2018) MBio, 9, pp. e00091-e00118
  • Ramos, P.I.P., Pyrosequencing-based analysis reveals a novel capsular gene cluster in a kpc-producing klebsiella pneumoniae clinical isolate identified in Brazil (2012) BMC Microbiol., 12, p. 173
  • Ramos, P.I.P., Comparative analysis of the complete genome of KPC-2-producing klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms (2014) BMC Genomics, 15, pp. 1-16
  • Yu, N.Y., PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes (2010) Bioinformatics, 26, pp. 1608-1615
  • Berman, H.M., The protein data bank (2000) Nucleic Acids Res., 28, pp. 235-242
  • Radusky, L., TuberQ: A Mycobacterium tuberculosis protein druggability database (2014) Database, 2014, p. bau035
  • Altschul, S.F., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402
  • Suzek, B.E., UniRef clusters: A comprehensive and scalable alternative for improving sequence similarity searches (2015) Bioinformatics, 31, pp. 926-932
  • Webb, B., Sali, A., Comparative protein structure modeling using modeller Current Protocols in Bioinformatics, 2002. , John Wiley & Sons, Inc
  • Benkert, P., Tosatto, S.C.E., Schomburg, D., QMEAN: A comprehensive scoring function for model quality assessment (2008) Proteins, 71, pp. 261-277
  • Schmidtke, P., Barril and predicting druggability. A high-throughput method for detection of drug binding sites (2010) J. Med. Chem., 53, pp. 5858-5867
  • Karp, P.D., Paley, S., Romero, P., The Pathway Tools software (2002) Bioinformatics, 18, pp. S225-S232
  • Claudel-Renard, C., Chevalet, C., Faraut, T., Kahn, D., Enzyme-specific profiles for genome annotation: PRIAM (2003) Nucleic Acids Res., 31, pp. 6633-6639
  • Ma, H., Zeng, A.-P., Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms (2003) Bioinformatics, 19, pp. 270-277
  • Shannon, P., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res., 13, pp. 2498-2504
  • Yeh, I., Hanekamp, T., Tsoka, S., Karp, P.D., Altman, R.B., Computational analysis of Plasmodium falciparum metabolism: Organizing genomic information to facilitate drug discovery (2004) Genome Res., 14, pp. 917-924
  • Ramage, B., Comprehensive arrayed transposon mutant library of klebsiella pneumoniae outbreak strain KPNIH1 (2017) J. Bacteriol., 199, pp. e00352-e00417
  • Liao, Y.-C., An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578 iYL1228 (2011) J. Bacteriol, 193, pp. 1710-1717
  • The NIH human microbiome project (2009) Genome Res., 19, pp. 2317-2323. , NIH HMP Working Group. et al
  • Darling, A.C., Mau, B., Blattner, F.R., Perna, N.T., Mauve: Multiple alignment of conserved genomic sequence with rearrangements (2004) Genome Res., 14, pp. 1394-1403
  • Ramos, P.I.P., The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets (2016) BMC Genomics, 17, p. 737
  • Anders, S., Pyl, P.T., Huber, W., HTSeq-a Python framework to work with high-throughput sequencing data (2015) Bioinformatics, 31, pp. 166-169
  • Robinson, M.D., McCarthy, D.J., Smyth, G.K., EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data (2010) Bioinformatics, 26, pp. 139-140
  • Sosa, E.J., Target-Pathogen: A structural bioinformatic approach to prioritize drug targets in pathogens (2018) Nucleic Acids Res., 46, pp. D413-D418
  • Fatumo, S., Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knockout strains in silico (2009) Infect. Genet. Evol., 9, pp. 351-358
  • Polyak, S.W., Abell, A.D., Wilce, M.C.J., Zhang, L., Booker, G.W., Structure, function and selective inhibition of bacterial acetylcoa carboxylase (2012) Appl. Microbiol. Biotechnol., 93, pp. 983-992
  • Cheng, C.C., Discovery and optimization of antibacterial AccC inhibitors (2009) Bioorg. Med. Chem. Lett., 19, pp. 6507-6514
  • Payne, D.J., Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents (2002) Antimicrob. Agents Chemother., 46, pp. 3118-3124
  • Payne, D.J., Gwynn, M.N., Holmes, D.J., Pompliano, D.L., Drugs for bad bugs: Confronting the challenges of antibacterial discovery (2006) Nat. Rev. Drug Discov., 6, pp. 29-40
  • Joo, S.H.L., A as a Drug Target and Therapeutic Molecule (2015) Biomol. Ther., 23, pp. 510-516
  • Erwin, A.L., Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme lpxc (2016) Cold Spring Harb. Perspect. Med., 6
  • Kalinin, D.V., Holl, R., LpxC inhibitors: A patent review (2010-2016) (2017) Expert Opin. Ther. Pat., 27, pp. 1227-1250
  • Kalinin, D.V., Holl, R., Insights into the zinc-dependent deacetylase lpxc: Biochemical properties and inhibitor design (2016) CTMC, 16, pp. 2379-2430
  • Lemaître, N., Curative treatment of severe gram-negative bacterial infections by a new class of antibiotics targeting lpxc (2017) MBio, 8
  • Peleg, A.Y., Seifert, H., Paterson, D.L., Acinetobacter baumannii: Emergence of a successful pathogen (2008) Clin. Microbiol. Rev., 21, pp. 538-582
  • Daugelavicius, R., Bakiene, E., Bamford, D.H., Stages of polymyxin b interaction with the Escherichia coli cell envelope (2000) Antimicrob. Agents Chemother., 44, pp. 2969-2978
  • Deris, Z.Z., A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADHquinone oxidoreductase activity (2014) J. Antibiot., 67, pp. 147-151
  • Liu, Y., Yang, L., Molin, S., Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa growth and biofilm formation (2010) Antimicrob. Agents Chemother., 54, pp. 3960-3963
  • Heuston, S., Begley, M., Gahan, C.G.M., Hill, C., Isoprenoid biosynthesis in bacterial pathogens (2012) Microbiology, 158, pp. 1389-1401
  • Masini, T., Hirsch, A.K.H., Development of Inhibitors of the 2C-Methyl-d-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents (2014) J. Med. Chem., 57, pp. 9740-9763
  • Saggu, G.S., Pala, Z.R., Garg, S., Saxena, V., New insight into isoprenoids biosynthesis process and future prospects for drug designing in plasmodium (2016) Front. Microbiol., 7
  • Kadian, K., Structural modeling identifies Plasmodium vivax 4-diphosphocytidyl-2C-methyl- d -erythritol kinase (IspE) as a plausible new antimalarial drug target (2018) Parasitol. Int., 67, pp. 375-385
  • Tang, M., Odejinmi, S.I., Allette, Y.M., Vankayalapati, H., Lai, K., Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) kinase of Gram-negative bacteria (2011) Bioorg. Med. Chem., 19, pp. 5886-5895
  • Zhang, Y.-M., Rock, C.O., Membrane lipid homeostasis in bacteria (2008) Nat. Rev. Microbiol., 6, pp. 222-233
  • Bukata, L., Altabe, S., De Mendoza, D., Ugalde, R.A., Comerci, D.J., Phosphatidylethanolamine synthesis is required for optimal virulence of brucella abortus (2008) J. Bacteriol., 190, pp. 8197-8203
  • Bergen, P.J., Optimizing polymyxin combinations against resistant gram-negative bacteria (2015) Infectious Diseases and Therapy, 4, pp. 391-415
  • Deris, Z.Z., The combination of colistin and doripenem is synergistic against klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model (2012) Antimicrob. Agents Chemother., 56, pp. 5103-5112
  • Bergen, P.J., Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant pseudomonas aeruginosa at multiple inocula (2011) Antimicrob. Agents Chemother., 55, pp. 5134-5142
  • Cai, Y., Evaluating polymyxin b-based combinations against carbapenem-resistant Escherichia coli in time-kill studies and in a hollow-fiber infection model (2016) Antimicrob. Agents Chemother., 61, pp. e01509-e01516
  • Hussein, M.H., From breast cancer to antimicrobial: Combating extremely resistant gram-negative 'superbugs' using novel combinations of polymyxin b with selective estrogen receptor modulators (2017) Microb. Drug Resist., 23, pp. 640-650
  • Paranagama, N., Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB (2017) Biochem. J, 474, pp. 1017-1039
  • Falcão, V.C.A., Validation of Mycobacterium tuberculosis dihydroneopterin aldolase as a molecular target for antituberculosis drug development (2017) Biochem. Biophys. Res. Commun., 485, pp. 814-819
  • Heath, R.J., White, S.W., Rock, C.O., Lipid biosynthesis as a target for antibacterial agents (2001) Prog. Lipid Res., 40, pp. 467-497
  • McAllister, K.A., Peery, R.B., Zhao, G., Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial species: Biochemical and structural properties and physiological implications (2006) J. Bacteriol., 188, pp. 4737-4748
  • Marcella, A.M., Culbertson, S.J., Shogren-Knaak, M.A., Barb, A.W., Structure, high affinity, and negative cooperativity of the Escherichia coli holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) synthase complex (2017) J. Mol. Biol., 429, pp. 3763-3775
  • Bunkoczi, G., Mechanism and substrate recognition of human holo ACP synthase (2007) Chem. Biol., 14, pp. 1243-1253
  • Zou, L., Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections (2017) EMBO Mol. Med., 9, pp. 1165-1178
  • Cohen, P., Protein kinases - The major drug targets of the twenty-first century (2002) Nat. Rev. Drug Discov., 1, pp. 309-315
  • Schaenzer, A.J., A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the PASTA kinase PrkA (2017) J. Biol. Chem., 292, pp. 17037-17045
  • Marcos, E., Crehuet, R., Bahar, I., On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm (2010) PLoS Comput. Biol., 6, p. e1000738
  • Miranda, A., Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei (2016) Front. Cell. Infect. Microbiol., 6, p. 77
  • Webb, E., Downs, D., Characterization of thil, encoding thiamin-monophosphate kinase, in salmonella typhimurium (1997) J. Biol. Chem., 272, pp. 15702-15707
  • Zhang, J., Structure-based discovery of LpxC inhibitors (2017) Bioorg. Med. Chem. Lett., 27, pp. 1670-1680
  • Tan, J.H., In Vitro and in Vivo Efficacy of an LpxC Inhibitor, CHIR-090, Alone or Combined with Colistin against Pseudomonas aeruginosa Biofilm (2017) Antimicrob. Agents Chemother., 61
  • Ding, S., Design, synthesis and structure-activity relationship evaluation of novel LpxC inhibitors as Gram-negative antibacterial agents (2018) Bioorg. Med. Chem. Lett., 28, pp. 94-102
  • Zhang, Y.-M., White, S.W., Rock, C.O., Inhibiting bacterial fatty acid synthesis (2006) J. Biol. Chem., 281, pp. 17541-17544
  • Leibundgut, M., Maier, T., Jenni, S., Ban, N., The multienzyme architecture of eukaryotic fatty acid synthases (2008) Curr. Opin. Struct. Biol., 18, pp. 714-725
  • Wang, J., Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7612-7616
  • Banerjee, A., InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis (1994) Science, 263, pp. 227-230
  • Heath, R.J., Yu, Y.T., Shapiro, M.A., Olson, E., Rock, C.O., Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis (1998) J. Biol. Chem., 273, pp. 30316-30320
  • Chen, Y.-L., Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans (2010) Mol. Microbiol., 75, pp. 1112-1132
  • Chopra, I., Ball, P., Transport of antibiotics into bacteria (1982) Advances in Microbial Physiology Volume 23, 23, pp. 183-240. , Elsevier
  • Santos, R.S., Figueiredo, C., Azevedo, N.F., Braeckmans, K., De Smedt, S.C., Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics (2017) Adv. Drug Deliv. Rev., , https://doi.org/10.1016/j.addr.2017.12.010
  • Postma, T.M., Liskamp, R.M.J., Triple-targeting Gram-negative selective antimicrobial peptides capable of disrupting the cell membrane and lipid A biosynthesis (2016) RSC Adv., 6, pp. 65418-65421
  • Wu, F., Design and synthesis of novel antimicrobials (2006) International Patent Application PCT/CA2006/000314
  • Bommineni, G.R., Thiolactomycin-Based Inhibitors of Bacterial β-Ketoacyl-ACP Synthases with in vivo Activity (2016) J. Med. Chem., 59, pp. 5377-5390
  • Serio, A.W., Structure, Potency and Bactericidal Activity of ACHN-975, a First-in-Class LpxC Inhibitor (2013) 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy
  • Pahal, V., Significance of apigenin and rosmarinic acid mediated inhibition pathway of MurG, MurE and DNA adenine methylase enzymes with antibacterial potential derived from the methanolic extract of Ocimum sanctum (2018) MOJ Drug Design Development & Therapy, 2, pp. 68-78
  • Mann, P.A., Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG (2013) ACS Chem. Biol., 8, pp. 2442-2451

Citas:

---------- APA ----------
Ramos, P.I.P., Fernández Do Porto, D., Lanzarotti, E., Sosa, E.J., Burguener, G., Pardo, A.M., Klein, C.C.,..., Nicolás, M.F. (2018) . An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-28916-7
---------- CHICAGO ----------
Ramos, P.I.P., Fernández Do Porto, D., Lanzarotti, E., Sosa, E.J., Burguener, G., Pardo, A.M., et al. "An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-28916-7
---------- MLA ----------
Ramos, P.I.P., Fernández Do Porto, D., Lanzarotti, E., Sosa, E.J., Burguener, G., Pardo, A.M., et al. "An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-28916-7
---------- VANCOUVER ----------
Ramos, P.I.P., Fernández Do Porto, D., Lanzarotti, E., Sosa, E.J., Burguener, G., Pardo, A.M., et al. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-28916-7