Artículo

Marginedas-Freixa, I.; Alvarez, C.L.; Moras, M.; Leal Denis, M.F.; Hattab, C.; Halle, F.; Bihel, F.; Mouro-Chanteloup, I.; Lefevre, S.D.; Le Van Kim, C.; Schwarzbaum, P.J.; Ostuni, M.A. "Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1" (2018) Scientific Reports. 8(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We previously demonstrated that the translocase protein TSPO2 together with the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT) were involved in a membrane transport complex in human red blood cells (RBCs). Because VDAC was proposed as a channel mediating ATP release in RBCs, we used TSPO ligands together with VDAC and ANT inhibitors to test this hypothesis. ATP release was activated by TSPO ligands, and blocked by inhibitors of VDAC and ANT, while it was insensitive to pannexin-1 blockers. TSPO ligand increased extracellular ATP (ATPe) concentration by 24–59% over the basal values, displaying an acute increase in [ATPe] to a maximal value, which remained constant thereafter. ATPe kinetics were compatible with VDAC mediating a fast but transient ATP efflux. ATP release was strongly inhibited by PKC and PKA inhibitors as well as by depleting intracellular cAMP or extracellular Ca2+, suggesting a mechanism involving protein kinases. TSPO ligands favoured VDAC polymerization yielding significantly higher densities of oligomeric bands than in unstimulated cells. Polymerization was partially inhibited by decreasing Ca2+ and cAMP contents. The present results show that TSPO ligands induce polymerization of VDAC, coupled to activation of ATP release by a supramolecular complex involving VDAC, TSPO2 and ANT. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1
Autor:Marginedas-Freixa, I.; Alvarez, C.L.; Moras, M.; Leal Denis, M.F.; Hattab, C.; Halle, F.; Bihel, F.; Mouro-Chanteloup, I.; Lefevre, S.D.; Le Van Kim, C.; Schwarzbaum, P.J.; Ostuni, M.A.
Filiación:UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, Paris, F-75015, France
Institut National de la Transfusion Sanguine, Laboratoire d’Excellence GR-Ex, Paris, F-75015, France
Instituto de Química y Fisico-Química Biológicas “Prof. Alejandro C. Paladini”, UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina
Universidad de Buenos Aires. Facultad Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Buenos Aires, Argentina
UMR7200, Laboratoire d’Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, Illkirch Graffenstaden, 67400, France
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Argentina
Año:2018
Volumen:8
Número:1
DOI: http://dx.doi.org/10.1038/s41598-018-29885-7
Título revista:Scientific Reports
Título revista abreviado:Sci. Rep.
ISSN:20452322
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20452322_v8_n1_p_MarginedasFreixa

Referencias:

  • Sprague, R.S., Stephenson, A.H., Ellsworth, M.L., Red not dead: signaling in and from erythrocytes (2007) Trends in endocrinology and metabolism: TEM, 18, pp. 350-355
  • Olearczyk, J.J., Ellsworth, M.L., Stephenson, A.H., Lonigro, A.J., Sprague, R.S., Nitric oxide inhibits ATP release from erythrocytes (2004) The Journal of pharmacology and experimental therapeutics, 309, pp. 1079-1084
  • Sprague, R.S., Ellsworth, M.L., Stephenson, A.H., Lonigro, A.J., Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release (2001) American journal of physiology. Cell physiology, 281, pp. C1158-C1164. , PID: 11546651
  • Sikora, J., Orlov, S.N., Furuya, K., Grygorczyk, R., Hemolysis is a primary ATP-release mechanism in human erythrocytes (2014) Blood, 124, pp. 2150-2157
  • Lazarowski, E.R., Vesicular and conductive mechanisms of nucleotide release (2012) Purinergic signalling, 8, pp. 359-373
  • Melhorn, M.I., CR1-mediated ATP release by human red blood cells promotes CR1 clustering and modulates the immune transfer process (2013) The Journal of biological chemistry, 288, pp. 31139-31153
  • Praetorius, H.A., Leipziger, J., ATP release from non-excitable cells (2009) Purinergic signalling, 5, pp. 433-446
  • Skals, M., Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore (2014) The Journal of biological chemistry, 289, pp. 19098-19109
  • Leal Denis, M.F., Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes (2016) PloS one, 11
  • Montalbetti, N., Homeostasis of extracellular ATP in human erythrocytes (2011) The Journal of biological chemistry, 286, pp. 38397-38407
  • Sridharan, M., Pannexin 1 is the conduit for low oxygen tension-induced ATP release from human erythrocytes (2010) American journal of physiology. Heart and circulatory physiology, 299, pp. H1146-H1152
  • Leal Denis, M.F., Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes (2013) Biochimica et biophysica acta, 1830, pp. 4692-4707
  • Olearczyk, J.J., Stephenson, A.H., Lonigro, A.J., Sprague, R.S., Receptor-mediated activation of the heterotrimeric G-protein Gs results in ATP release from erythrocytes (2001) Medical science monitor: international medical journal of experimental and clinical research, 7, pp. 669-674
  • Sprague, R.S., Bowles, E.A., Olearczyk, J.J., Stephenson, A.H., Lonigro, A.J., The role of G protein beta subunits in the release of ATP from human erythrocytes (2002) Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 53, pp. 667-674
  • Sridharan, M., Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel (2012) American journal of physiology. Heart and circulatory physiology, 302, pp. H553-H559
  • Adderley, S.P., Inhibition of ATP release from erythrocytes: a role for EPACs and PKC (2011) Microcirculation, 18, pp. 128-135
  • Locovei, S., Bao, L., Dahl, G., Pannexin 1 in erythrocytes: function without a gap (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 7655-7659
  • Forsyth, A.M., Wan, J., Owrutsky, P.D., Abkarian, M., Stone, H.A., Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release (2011) Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 10986-10991
  • Qiu, F., Wang, J., Spray, D.C., Scemes, E., Dahl, G., Two non-vesicular ATP release pathways in the mouse erythrocyte membrane (2011) FEBS letters, 585, pp. 3430-3435
  • Okada, S.F., Voltage-dependent anion channel-1 (VDAC-1) contributes to ATP release and cell volume regulation in murine cells (2004) The Journal of general physiology, 124, pp. 513-526
  • Sabirov, R.Z., Merzlyak, P.G., Plasmalemmal VDAC controversies and maxi-anion channel puzzle (2012) Biochimica et biophysica acta, 1818, pp. 1570-1580
  • Bouyer, G., Erythrocyte peripheral type benzodiazepine receptor/voltage-dependent anion channels are upregulated by Plasmodium falciparum (2011) Blood, 118, pp. 2305-2312
  • Marginedas-Freixa, I., TSPO ligands stimulate ZnPPIX transport and ROS accumulation leading to the inhibition of P. falciparum growth in human blood (2016) Scientific reports, 6
  • Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., Tsujimoto, Y., Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells (2001) The Journal of cell biology, 152, pp. 237-250. , PID: 11266442
  • Sabirov, R.Z., Okada, Y., ATP release via anion channels (2005) Purinergic signalling, 1, pp. 311-328
  • Pafundo, D.E., Alvarez, C.L., Krumschnabel, G., Schwarzbaum, P.J., A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer (2010) The Journal of biological chemistry, 285, pp. 6134-6144
  • Allouche, M., ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro (2012) Biochemical and biophysical research communications, 429, pp. 12-17
  • Rostovtseva, T., Colombini, M., VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function (1997) Biophysical journal, 72, pp. 1954-1962
  • Shoshan-Barmatz, V., Mizrachi, D., Keinan, N., Oligomerization of the mitochondrial protein VDAC1: from structure to function and cancer therapy (2013) Progress in molecular biology and translational science, 117, pp. 303-334
  • Veenman, L., Shandalov, Y., Gavish, M., VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis (2008) Journal of bioenergetics and biomembranes, 40, pp. 199-205
  • Feng, J., Tyrosine phosphorylation by Src within the cavity of the adenine nucleotide translocase 1 regulates ADP/ATP exchange in mitochondria (2010) American journal of physiology. Cell physiology, 298, pp. C740-C748
  • Baines, C.P., Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria (2003) Circulation research, 92, pp. 873-880
  • Bera, A.K., Ghosh, S., Das, S., Mitochondrial VDAC can be phosphorylated by cyclic AMP-dependent protein kinase (1995) Biochemical and biophysical research communications, 209, pp. 213-217
  • Macfarlane, D.E., Srivastava, P.C., Mills, D.C., 2-Methylthioadenosine[beta-32P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets (1983) The Journal of clinical investigation, 71, pp. 420-428. , PID: 6298277
  • Wang, L., ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells (2005) Circulation research, 96, pp. 189-196
  • Grygorczyk, R., Orlov, S.N., Effects of Hypoxia on Erythrocyte Membrane Properties-Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow (2017) Frontiers in physiology, 8, p. 1110
  • De Pinto, V., Messina, A., Lane, D.J., Lawen, A., Voltage-dependent anion-selective channel (VDAC) in the plasma membrane (2010) FEBS letters, 584, pp. 1793-1799
  • Bordet, T., Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis (2007) The Journal of pharmacology and experimental therapeutics, 322, pp. 709-720
  • Garnier, M., In vitro reconstitution of a functional peripheral-type benzodiazepine receptor from mouse Leydig tumor cells (1994) Mol Pharmacol, 45, pp. 201-211. , PID: 8114671
  • Ostuni, M.A., Distribution, pharmacological characterization and function of the 18 kDa translocator protein in rat small intestine (2009) Biology of the cell, 101, pp. 573-586
  • Cleary, J., Johnson, K.M., Opipari, A.W., Jr., Glick, G.D., Inhibition of the mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor (2007) Bioorganic & medicinal chemistry letters, 17, pp. 1667-1670
  • Hatty, C.R., Banati, R.B., Protein-ligand and membrane-ligand interactions in pharmacology: the case of the translocator protein (TSPO) (2015) Pharmacological research: the official journal of the Italian Pharmacological Society, 100, pp. 58-63
  • Hatty, C.R., Investigating the interactions of the 18kDa translocator protein and its ligand PK11195 in planar lipid bilayers (2014) Biochimica et biophysica acta, 1838, pp. 1019-1030
  • Hallé, F., Discovery of Imidazoquinazolinone Derivatives as TSPO Ligands Modulating Neurosteroidogenesis and Cellular Bioenergetics in Neuroblastoma Cells Expressing Amyloid Precursor Protein (2017) ChemistrySelect, 2, pp. 6452-6457
  • Lenglet, T., A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis (2014) European journal of neurology, 21, pp. 529-536
  • Fernandez-Echevarria, C., Diaz, M., Ferrer, I., Canerina-Amaro, A., Marin, R., Abeta promotes VDAC1 channel dephosphorylation in neuronal lipid rafts. Relevance to the mechanisms of neurotoxicity in Alzheimer’s disease (2014) Neuroscience, 278, pp. 354-366
  • Herrera, J.L., Voltage-dependent anion channel as a resident protein of lipid rafts: post-transductional regulation by estrogens and involvement in neuronal preservation against Alzheimer’s disease (2011) Journal of neurochemistry, 116, pp. 820-827
  • Herrera, J.L., Fernandez, C., Diaz, M., Cury, D., Marin, R., Estradiol and tamoxifen differentially regulate a plasmalemmal voltage-dependent anion channel involved in amyloid-beta induced neurotoxicity (2011) Steroids, 76, pp. 840-844
  • Bowles, E.A., Phosphodiesterase 5 inhibitors augment UT-15C-stimulated ATP release from erythrocytes of humans with pulmonary arterial hypertension (2015) Experimental biology and medicine, 240, pp. 121-127
  • Knebel, S.M., Synergistic effects of prostacyclin analogs and phosphodiesterase inhibitors on cyclic adenosine 3′,5′ monophosphate accumulation and adenosine 3′5′ triphosphate release from human erythrocytes (2013) Experimental biology and medicine, 238, pp. 1069-1074
  • Dahl, G., ATP release through pannexon channels (2015) Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370. , https://doi.org/10.1098/rstb.2014.0191
  • Gatliff, J., A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling (2017) Cell death & disease, 8
  • Shoshan-Barmatz, V., Krelin, Y., Chen, Q., VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis (2017) Current Medicinal Chemistry, , https://doi.org/10.2174/0929867324666170616105200
  • Mannella, C.A., Kinnally, K.W., Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator (2008) Journal of bioenergetics and biomembranes, 40, pp. 149-155
  • Ellsworth, M.L., Red blood cell-derived ATP as a regulator of skeletal muscle perfusion (2004) Medicine and science in sports and exercise, 36, pp. 35-41
  • Sprague, R.S., Bowles, E.A., Achilleus, D., Ellsworth, M.L., Erythrocytes as controllers of perfusion distribution in the microvasculature of skeletal muscle (2011) Acta physiologica, 202, pp. 285-292
  • Alvarez, C.L., Regulation of extracellular ATP in human erythrocytes infected with Plasmodium falciparum (2014) PloS one, 9
  • Dondorp, A.M., Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria (2008) The Journal of infectious diseases, 197, pp. 79-84
  • Pafundo, D.E., Chara, O., Faillace, M.P., Krumschnabel, G., Schwarzbaum, P.J., Kinetics of ATP release and cell volume regulation of hyposmotically challenged goldfish hepatocytes. American journal of physiology (2008) Regulatory, integrative and comparative physiology, 294, pp. R220-R233
  • Strehler, B.L., Bioluminescence assay: principles and practice (1968) Methods of biochemical analysis, 16, pp. 99-181. , PID: 4385967
  • Fan, J., Rone, M.B., Papadopoulos, V., Translocator protein 2 is involved in cholesterol redistribution during erythropoiesis (2009) The Journal of biological chemistry, 284, pp. 30484-30497
  • Dahl, G., Qiu, F., Wang, J., The bizarre pharmacology of the ATP release channel pannexin1 (2013) Neuropharmacology, 75, pp. 583-593
  • Ma, W., Hui, H., Pelegrin, P., Surprenant, A., Pharmacological characterization of pannexin-1 currents expressed in mammalian cells (2009) The Journal of pharmacology and experimental therapeutics, 328, pp. 409-418
  • Brandolin, G., Boulay, F., Dalbon, P., Vignais, P.V., Orientation of the N-terminal region of the membrane-bound ADP/ATP carrier protein explored by antipeptide antibodies and an arginine-specific endoprotease. Evidence that the accessibility of the N-terminal residues depends on the conformational state of the carrier (1989) Biochemistry, 28, pp. 1093-1100. , PID: 2469463

Citas:

---------- APA ----------
Marginedas-Freixa, I., Alvarez, C.L., Moras, M., Leal Denis, M.F., Hattab, C., Halle, F., Bihel, F.,..., Ostuni, M.A. (2018) . Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Scientific Reports, 8(1).
http://dx.doi.org/10.1038/s41598-018-29885-7
---------- CHICAGO ----------
Marginedas-Freixa, I., Alvarez, C.L., Moras, M., Leal Denis, M.F., Hattab, C., Halle, F., et al. "Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1" . Scientific Reports 8, no. 1 (2018).
http://dx.doi.org/10.1038/s41598-018-29885-7
---------- MLA ----------
Marginedas-Freixa, I., Alvarez, C.L., Moras, M., Leal Denis, M.F., Hattab, C., Halle, F., et al. "Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1" . Scientific Reports, vol. 8, no. 1, 2018.
http://dx.doi.org/10.1038/s41598-018-29885-7
---------- VANCOUVER ----------
Marginedas-Freixa, I., Alvarez, C.L., Moras, M., Leal Denis, M.F., Hattab, C., Halle, F., et al. Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Sci. Rep. 2018;8(1).
http://dx.doi.org/10.1038/s41598-018-29885-7